DOI QR코드

DOI QR Code

UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer

  • Kim, Min Jun (Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University) ;
  • Lee, Han Ju (Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University) ;
  • Choi, Mee Young (Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University) ;
  • Kang, Sang Soo (Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University) ;
  • Kim, Yoon Sook (Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University) ;
  • Shin, Jeong Kyu (Department of Obstetrics and Gynecology, College of Medicine, Gyeongsang National University) ;
  • Choi, Wan Sung (Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University)
  • Received : 2021.01.03
  • Accepted : 2021.02.21
  • Published : 2021.03.31

Abstract

DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.

Keywords

References

  1. Alhosin, M., Sharif, T., Mousli, M., Etienne-Selloum, N., Fuhrmann, G., Schini-Kerth, V.B., and Bronner, C. (2011). Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. J. Exp. Clin. Cancer Res. 30, 41. https://doi.org/10.1186/1756-9966-30-41
  2. Babbio, F., Pistore, C., Curti, L., Castiglioni, I., Kunderfranco, P., Brino, L., Oudet, P., Seiler, R., Thalman, G.N., Roggero, E., et al. (2012). The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression. Oncogene 31, 4878-4887. https://doi.org/10.1038/onc.2011.641
  3. Baldan, F., Mio, C., Lavarone, E., Di Loreto, C., Puglisi, F., Damante, G., and Puppin, C. (2015). Epigenetic bivalent marking is permissive to the synergy of HDAC and PARP inhibitors on TXNIP expression in breast cancer cells. Oncol. Rep. 33, 2199-2206. https://doi.org/10.3892/or.2015.3873
  4. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., et al. (2013). NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 41, D991-D995. https://doi.org/10.1093/nar/gks1193
  5. Beck, A., Trippel, F., Wagner, A., Joppien, S., Felle, M., Vokuhl, C., Schwarzmayr, T., Strom, T.M., von Schweinitz, D., Langst, G., et al. (2018). Overexpression of UHRF1 promotes silencing of tumor suppressor genes and predicts outcome in hepatoblastoma. Clin. Epigenetics 10, 27. https://doi.org/10.1186/s13148-018-0462-7
  6. Biewenga, P., Buist, M.R., Moerland, P.D., Ver Loren van Themaat, E., van Kampen, A.H., ten Kate, F.J., and Baas, F. (2008). Gene expression in early stage cervical cancer. Gynecol. Oncol. 108, 520-526. https://doi.org/10.1016/j.ygyno.2007.11.024
  7. Bostick, M., Kim, J.K., Esteve, P.O., Clark, A., Pradhan, S., and Jacobsen, S.E. (2007). UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760-1764. https://doi.org/10.1126/science.1147939
  8. Dunn, L.L., Buckle, A.M., Cooke, J.P., and Ng, M.K. (2010). The emerging role of the thioredoxin system in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 30, 2089-2098. https://doi.org/10.1161/ATVBAHA.110.209643
  9. Dutta, K.K., Nishinaka, Y., Masutani, H., Akatsuka, S., Aung, T.T., Shirase, T., Lee, W.H., Yamada, Y., Hiai, H., Yodoi, J., et al. (2005). Two distinct mechanisms for loss of thioredoxin-binding protein-2 in oxidative stressinduced renal carcinogenesis. Lab. Invest. 85, 798-807. https://doi.org/10.1038/labinvest.3700280
  10. El-Araby, A.M., Fouad, A.A., Hanbal, A.M., Abdelwahab, S.M., Qassem, O.M., and El-Araby, M.E. (2016). Epigenetic pathways of oncogenic viruses: therapeutic promises. Arch. Pharm. (Weinheim) 349, 73-90. https://doi.org/10.1002/ardp.201500375
  11. Elgort, M.G., O'Shea, J.M., Jiang, Y., and Ayer, D.E. (2010). Transcriptional and translational downregulation of thioredoxin interacting protein is required for metabolic reprogramming during G(1). Genes Cancer 1, 893-907. https://doi.org/10.1177/1947601910389604
  12. Erkeland, S.J., Palande, K.K., Valkhof, M., Gits, J., Danen-van Oorschot, A., and Touw, I.P. (2009). The gene encoding thioredoxin-interacting protein (TXNIP) is a frequent virus integration site in virus-induced mouse leukemia and is overexpressed in a subset of AML patients. Leuk. Res. 33, 1367-1371. https://doi.org/10.1016/j.leukres.2009.02.027
  13. Esteller, M. (2008). Epigenetics in cancer. N. Engl. J. Med. 358, 1148-1159. https://doi.org/10.1056/NEJMra072067
  14. Felle, M., Joppien, S., Nemeth, A., Diermeier, S., Thalhammer, V., Dobner, T., Kremmer, E., Kappler, R., and Langst, G. (2011). The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res. 39, 8355-8365. https://doi.org/10.1093/nar/gkr528
  15. Ge, T.T., Yang, M., Chen, Z., Lou, G., and Gu, T. (2016). UHRF1 gene silencing inhibits cell proliferation and promotes cell apoptosis in human cervical squamous cell carcinoma CaSki cells. J. Ovarian Res. 9, 42. https://doi.org/10.1186/s13048-016-0253-8
  16. Gronbaek, K., Hother, C., and Jones, P.A. (2007). Epigenetic changes in cancer. APMIS 115, 1039-1059. https://doi.org/10.1111/j.1600-0463.2007.apm_636.xml.x
  17. Han, S.H., Jeon, J.H., Ju, H.R., Jung, U., Kim, K.Y., Yoo, H.S., Lee, Y.H., Song, K.S., Hwang, H.M., Na, Y.S., et al. (2003). VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 22, 4035-4046. https://doi.org/10.1038/sj.onc.1206610
  18. Hong, K., Xu, G., Grayson, T.B., and Shalev, A. (2016). Cytokines regulate beta-cell thioredoxin-interacting protein (TXNIP) via distinct mechanisms and pathways. J. Biol. Chem. 291, 8428-8439. https://doi.org/10.1074/jbc.M115.698365
  19. Jeon, J.H., Lee, K.N., Hwang, C.Y., Kwon, K.S., You, K.H., and Choi, I. (2005). Tumor suppressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Cancer Res. 65, 4485-4489. https://doi.org/10.1158/0008-5472.CAN-04-2271
  20. Jiao, D., Huan, Y., Zheng, J., Wei, M., Zheng, G., Han, D., Wu, J., Xi, W., Wei, F., Yang, A.G., et al. (2019). UHRF1 promotes renal cell carcinoma progression through epigenetic regulation of TXNIP. Oncogene 38, 5686-5699. https://doi.org/10.1038/s41388-019-0822-6
  21. Kaimul, A.M., Nakamura, H., Masutani, H., and Yodoi, J. (2007). Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radic. Biol. Med. 43, 861-868. https://doi.org/10.1016/j.freeradbiomed.2007.05.032
  22. Lindner, H.A. (2007). Deubiquitination in virus infection. Virology 362, 245-256. https://doi.org/10.1016/j.virol.2006.12.035
  23. Liu, Y. and Min, W. (2002). Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ. Res. 90, 1259-1266. https://doi.org/10.1161/01.RES.0000022160.64355.62
  24. Morrison, J.A., Pike, L.A., Sams, S.B., Sharma, V., Zhou, Q., Severson, J.J., Tan, A.C., Wood, W.M., and Haugen, B.R. (2014). Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol. Cancer 13, 62. https://doi.org/10.1186/1476-4598-13-62
  25. Nie, W., Huang, W., Zhang, W., Xu, J., Song, W., Wang, Y., Zhu, A., Luo, J., Huang, G., Wang, Y., et al. (2015). TXNIP interaction with the Her-1/2 pathway contributes to overall survival in breast cancer. Oncotarget 6, 3003-3012. https://doi.org/10.18632/oncotarget.3096
  26. Poreba, E., Broniarczyk, J.K., and Gozdzicka-Jozefiak, A. (2011). Epigenetic mechanisms in virus-induced tumorigenesis. Clin. Epigenetics 2, 233-247. https://doi.org/10.1007/s13148-011-0026-6
  27. Pyeon, D., Newton, M.A., Lambert, P.F., den Boon, J.A., Sengupta, S., Marsit, C.J., Woodworth, C.D., Connor, J.P., Haugen, T.H., Smith, E.M., et al. (2007). Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res. 67, 4605-4619. https://doi.org/10.1158/0008-5472.CAN-06-3619
  28. Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., and Chinnaiyan, A.M. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1-6. https://doi.org/10.1016/S1476-5586(04)80047-2
  29. Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596-2606. https://doi.org/10.1093/emboj/17.9.2596
  30. Sharif, J., Muto, M., Takebayashi, S., Suetake, I., Iwamatsu, A., Endo, T.A., Shinga, J., Mizutani-Koseki, Y., Toyoda, T., Okamura, K., et al. (2007). The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908-912. https://doi.org/10.1038/nature06397
  31. Sheng, Y., Wang, H., Liu, D., Zhang, C., Deng, Y., Yang, F., Zhang, T., and Zhang, C. (2016). Methylation of tumor suppressor gene CDH13 and SHP1 promoters and their epigenetic regulation by the UHRF1/PRMT5 complex in endometrial carcinoma. Gynecol. Oncol. 140, 145-151. https://doi.org/10.1016/j.ygyno.2015.11.017
  32. Unoki, M., Kelly, J.D., Neal, D.E., Ponder, B.A., Nakamura, Y., and Hamamoto, R. (2009). UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. Br. J. Cancer 101, 98-105. https://doi.org/10.1038/sj.bjc.6605123
  33. Unoki, M., Nishidate, T., and Nakamura, Y. (2004). ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 23, 7601-7610. https://doi.org/10.1038/sj.onc.1208053
  34. Wan, X., Yang, S., Huang, W., Wu, D., Chen, H., Wu, M., Li, J., Li, T., and Li, Y. (2016). UHRF1 overexpression is involved in cell proliferation and biochemical recurrence in prostate cancer after radical prostatectomy. J. Exp. Clin. Cancer Res. 35, 34. https://doi.org/10.1186/s13046-016-0308-0
  35. Wei, M., Jiao, D., Han, D., Wu, J., Wei, F., Zheng, G., Guo, Z., Xi, W., Yang, F., Xie, P., et al. (2017). Knockdown of RNF2 induces cell cycle arrest and apoptosis in prostate cancer cells through the upregulation of TXNIP. Oncotarget 8, 5323-5338. https://doi.org/10.18632/oncotarget.14142
  36. Welsh, S.J., Bellamy, W.T., Briehl, M.M., and Powis, G. (2002). The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res. 62, 5089-5095.
  37. Yu, Q. (2008). Cancer gene silencing without DNA hypermethylation. Epigenetics 3, 315-317. https://doi.org/10.4161/epi.3.6.7202
  38. Zhang, Q., Qiao, L., Wang, X., Ding, C., and Chen, J.J. (2018). UHRF1 epigenetically down-regulates UbcH8 to inhibit apoptosis in cervical cancer cells. Cell Cycle 17, 300-308. https://doi.org/10.1080/15384101.2017.1403686

Cited by

  1. An Optimized Method for the Construction of a DNA Methylome from Small Quantities of Tissue or Purified DNA from Arabidopsis Embryo vol.44, pp.8, 2021, https://doi.org/10.14348/molcells.2021.0084
  2. MET1-Dependent DNA Methylation Represses Light Signaling and Influences Plant Regeneration in Arabidopsis vol.44, pp.10, 2021, https://doi.org/10.14348/molcells.2021.0160