• Title/Summary/Keyword: double bond

Search Result 334, Processing Time 0.026 seconds

Chemical Reaction of Pentacene Growth on Hybrid Type Insulator by Annealing Temperature (하이브리드 타입 절연막 위에서 열처리 온도에 따른 펜타센 생성과 관련된 화학반응)

  • Oh Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.13-17
    • /
    • 2006
  • Pentacene channel for organic thin film transistor was deposited on the SiOC film by thermal evaporation. The growth of pentacene is related with the Diels-Alder reaction and the nucleophilic reaction by the thermal induction. The surface is an important factor to control the recursive Diels-Alder reaction for growing of pentacene on SiOC far The terminal C=C double bond of pentacene molecule was broken easily as a result of attack of the nucleophilic reagents on the surface of SiOC film. The nucleophilic reaction can be accelerated by increasing temperature on surface, and it maks pentacene to grow hardly on the SiOC film with a flow rate ratio of $O_2/(BTMSM+O_2)=0.5$ due to its inorganic property. The nucleophlic reaction mechanism is $SN_2(bimolecular nucleophilic substitution)$ type.

Biocatalysis and Biotransformation for the Production of Chiral Epoxides (바이오촉매 및 생물전환을 이용한 광학활성 에폭사이드 제조)

  • Kim, Hee-Sook;Lee, Ok-Kyung;Lee, Eun-Yeol
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.772-778
    • /
    • 2005
  • Chiral epoxides are important chiral synthons in organic synthesis for the production of chiral pharmaceuticals and functional food additives. Chiral epoxides can be synthesized by enantioselective introduction of oxygen to double bond of substrate by monooxygenase. Peroxidase also carry out asymmetric epoxidation of alkene in the presence of hydrogen peroxide. Kinetic resolution of racemic epoxides via enantioselective hydrolysis reaction by epoxide hydrolase (EH) is a very promising method since chiral epoxides with a high optical purity can be obtained from cheap and readily available racemic epoxides. In this review, various biocatalytic approaches for the production of chiral epoxides with several examples are presented and their commercial potential is discussed.

Antioxidant Activity of Flavonoids in Plant Origin Food (식물성 식품에 존재하는 Flavonoids의 항산화 활성)

  • 김건희;최미희
    • Food Science and Preservation
    • /
    • v.6 no.1
    • /
    • pp.121-135
    • /
    • 1999
  • Effective synthetic antioxidants such as butylated hydroxyanisole(BHA) and butylated hydroxytoluene(BHT) have been widely used in the food industry, but they are suspected to be toxic and carcinogenic effects. Therefore, the development of safely available natural antioxidants such as ascorbic acid, ${\alpha}$-tocopherol, ${\beta}$-carotene, flavonoids and selenium is essential. In particular, flavonoids, 2-phenyl-benzo-${\alpha}$-pyrones, are polyphenolic compounds that occur ubiquitously in food of plant origin. flavonoids occur in foods generally as O-glycosides with sugars bound usually at the C\ulcorner position. And variations in their heterocyclic ring gibes rise to flavones, flavonols, flavanones, flavanols, catechins, anthocyanidins, chalcone and isoflavones. Vegetables, fruits, and beverages are the main dietary sources of the flavonols, primarily as quercetin, kaempferol, and myricetin and the corresponding flavones, apigenin and luteolin. These flavonoids have biological activity such as antioxidant, anti-inflammatory, antithrombotic, antimutagenic, anticarcimogenic antiallergic and antimicrobial activity effects in vitro and in vivo. Flavonoids posses strong antioxidant activities acting as oxygen radicals scavenger, metal chelators and enzyme inhibitor. The antioxidant activity of flavonoids is determined by their molecular structure and more specially, by the position and degree of hydroxylation of the ring structure. All flavonoids with the 3`, 4`-dihydroxy(ortho-dihydroxy) posses marked antioxidant activity. And antioxidant activity increases with the number of hydroxyl groups substituted on the A-and B-rings. There is as yet no certainty about the effect of the presence of a double bond between C\ulcorner and C\ulcorner on the antioxidant activity of flavonoids.

  • PDF

Neutral Deinking of Photocopied Papers with Nonionic Surfactants (비이온 계면활성제를 이용한 복사고지의 중성탈묵)

  • 정영재;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.58-67
    • /
    • 2001
  • MOW (Mixed Office Waste) mainly consisted of photocopied paper is being recycled to produce tissue or fine paper products. Toner particles that are fused and set on paper surface in photocopying process turns into large and plate-shaped particles after repulping which prevents them to be removed effectively in flotation deinking. The immediate purpose of this study is to find the effective deinking technology that increases the recycling potential of photocopied papers for manufacturing tissue and fine paper products. In this study the effects of pulping temperature and the type of hydrophobic groups of nonionic surfactants on the deinking efficiency of photocopied paper has been investigated. Particle size distribution of the toner particles after pulping and flotation, brightness, yield and ash removal were investigated. The size of toner particles after pulping increased as the pulping temperature was increased. When pulping at the low temperature finer toner particles were generated, however, greater amount of toner particles was found to attach to the fiber. When the pulping temperature was greater than Tg of the toner, the amount of coarse hairy particles increased. When nonionic surfactants with a double bond in hydrophobic groups were used, toner removal efficiency, brightness and ash removal were increased. As the addition level of surfactant was increased, yield decreased rather sharply without improving brightness.

  • PDF

Effect of deodorizing Temperature on Physicochemical Characteristics in Corn Oil III. Effect of Deodorizing Tmeperature on Trans Fatty Acid Formation in Corn Oil (탈취온도가 옥수수기름의 이화학적 특성에 미치는 영향 제3보. 탈취온도가 옥수수기름의 Trans 지방산 생성에 미치는 영향)

  • 이근보;한명규;이미숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.1
    • /
    • pp.26-30
    • /
    • 1998
  • It was determined the effect of deodorizing temperature on forming amount and its composition of trans fatty acids by GLC in corn oil. Trans fatty acids were detected a trace amount at the low temperature deodorizing as 240~25$0^{\circ}C$, but it s amounts were showed to 0.30, 0.57, 0.64 and 0.81% at the high temperature deodorizing as 255~27$0^{\circ}C$, respectively. The isomerization phenomenon was remarkably in order that double bond number might to increase, tt, and ttt type were not detected nearly, that the ct, tc, cct and tcc type were detected to the large amount, respectively.

  • PDF

Cross Conjugated Chromophores Based On Indigo Typed

  • Park, Su-Yeol;Jeon, Geun;Sin, Jong-Il;Sin, Seung-Rim;O, Se-Hwa
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2004.11a
    • /
    • pp.274-275
    • /
    • 2004
  • The majority of dyes belong to the chromophoric class known as donor-acceptor systems, the essential structural feature of such systems being the presence of one or more electron donating groups conjugated to one or more electron withdrawing groups via an unsaturated bridge. The indigo molecule may be formally divided into two identical electron donor/acceptor subsystems, each containing an add number of pi electrons, two subsystems being joined by carbon-carbon double bond. Indigoid type dyes which show a strong colour change on protonation or dissociation have many potential functional applications, for example as analytical pH indicators, solvent polarity indicators, and in various imaging and reprographic systems.

  • PDF

Comparative Analyses of Flavonoids for nod Gene Induction in Bradyrhizobium japonicum USDA110

  • RYU JI-YOUNG;HUR HOR-GIL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1280-1285
    • /
    • 2005
  • Using the nodY::lacZ fusion system in Bradyrhizobium japonicum USDA 110, 22 flavonoids, which have structurally different features, were tested to define the role of the substituted functional groups as an inducer or inhibitor for the nod gene expression. A functional ,group of 4'-OH on the B-ring and the double bond between 2-C and 3-C on the C ring were required to induce the nod gene expression in B. japonicum USDA 110. In the case of isoflavones, the 4'-methoxyl group, which blocks the open 4'-OH functional group, did not significantly lower inducing activity, as compared with isoflavones with 4'-OH. However, all flavonols tested, which have a 3-OH functional group on the C-ring, did not induce, but inhibited the nod gene expression. Flavone, 7-hydroxyflavone, and kaempferol (5,7,4'-trihydroxyflavonol) at $1\;{\mu}M$ concentration significantly inhibited the nod gene expression induced by 7,4'-dihydroxyflavone. However, 7-hydroxy-4'-methoxyflavone at $1\;{\mu}M$ concentration showed a synergistic effect with genistein and 7,4'-dihydroxyflavone on the induction activity.

A Study on Autoignition Characteristics of 1-Heptene, 2-Heptene and 3-Heptene. (1-Heptene, 2-Heptene 및 3-Heptene의 발화특성에 관한 연구)

  • 최재욱;목연수;김상렬
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 1990
  • This study was performed by experiments with ASTM's apparatus for determination of autoignition temperature to obtain autoignition characteristics of 1-Heptene, 2-Heptene and 3-Heptene, respectively. As results, minimum autoignition temperatures (MAIT) of 1-Heptene, 2-Heptene and 3-Heptene were 246$^{\circ}C$, 248$^{\circ}C$ and 254$^{\circ}C$, respectively and each dropping volume of these temperatures was 0.25$m\ell$, 0.20$m\ell$ and 0.20$m\ell$. Instantaneous ignition temperatures measured at each dropping volume of Heptene were 371$^{\circ}C$, 357$^{\circ}C$ and 342$^{\circ}C$, respectively. Relation ignition delay time with ignition temperature at minimum autoignition temperature agreed well with Semenov's equation, and the values of apparent activation energy from this equation were 47Kca1/mo1 for 1-Heptene, 35Kca1/mo1 for 2-Heptene and 29Kca1/mo1 for 3-Heptene. It was found that the values of apparent activation energy decreased as the position of double bond changed from end to center in C-C chain.

  • PDF

Glycosylation of Flavonoids with E. coli Expressing Glycosyltransferase from Xanthomonas campestris

  • Kim, Jeong-Ho;Kim, Bong-Gyu;Kim, Jae-Ah;Park, Young-Hee;Lee, Yoon-Jung;Lim, Yoong-Ho;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.539-542
    • /
    • 2007
  • Glycosyltransferase family 1 (UOT) uses small chemicals including phenolics, antibiotics, and alkaloids as substrates to have an influence in biological activities. A glycosyltransferase (XcGT-2) from Xanthomonas campestris was cloned and consisted of a 1,257 bp open reading frame encoding a 45.5 kDa protein. In order to use this for the modification of phenolic compounds, XcGT-2 was expressed in Escherichia coli as a glutathione S-transferase fusion protein. With the E. coli transformant expressing XcGT-2, biotransformation of flavonoids was carried out. Flavonoids having a double bond between carbons 2 and 3, and hydroxyl groups at both C-3' and C-4', were glycosylated and the glycosylation position was determined to be at the hydroxyl group of C-3', using nuclear magnetic resonance spectroscopy. These results showed that XcGT-2 regiospecifically transferred a glucose molecule to the 3'-hydroxyl group of flavonoids containing both 3' and 4'-hydroxyl groups.

Anaerobic Lipid Degradation Through Acidification and Methanization

  • Kim,, I-Jung;Kim, Sang-Hyoun;Shin, Hang-Sik;Jung, Jin-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.179-186
    • /
    • 2010
  • In biological wastewater treatment, high lipid concentrations can inhibit the activity of microorganisms critical to the treatment process and cause undesirable biomass flotation. To reduce the inhibitory effects of high lipid concentrations, a two-phase anaerobic system, consisting of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic sludge blanket (UASB) reactor in series, was applied to synthetic dairy wastewater treatment. During 153 days of operation, the two-phase system showed stable performance in lipid degradation. In the ASBR, a 13% lipid removal efficiency and 10% double-bond removal efficiency were maintained. In the UASB, the chemical oxygen demand (COD), lipid, and volatile fatty acid (VFA) removal efficiencies were greater than 80%, 70%, and 95%, respectively, up to an organic loading rate of 6.5 g COD/l/day. No serious operational problems, such as significant scum formation or sludge washout, were observed. Protein degradation was found to occur prior to degradation during acidogenesis.