Browse > Article
http://dx.doi.org/10.5352/JLS.2005.15.5.772

Biocatalysis and Biotransformation for the Production of Chiral Epoxides  

Kim, Hee-Sook (Dapartment of Food Science and Technology, Kyungsung University)
Lee, Ok-Kyung (Dapartment of Food Science and Technology, Kyungsung University)
Lee, Eun-Yeol (Marine and Extreme Genome Research Center)
Publication Information
Journal of Life Science / v.15, no.5, 2005 , pp. 772-778 More about this Journal
Abstract
Chiral epoxides are important chiral synthons in organic synthesis for the production of chiral pharmaceuticals and functional food additives. Chiral epoxides can be synthesized by enantioselective introduction of oxygen to double bond of substrate by monooxygenase. Peroxidase also carry out asymmetric epoxidation of alkene in the presence of hydrogen peroxide. Kinetic resolution of racemic epoxides via enantioselective hydrolysis reaction by epoxide hydrolase (EH) is a very promising method since chiral epoxides with a high optical purity can be obtained from cheap and readily available racemic epoxides. In this review, various biocatalytic approaches for the production of chiral epoxides with several examples are presented and their commercial potential is discussed.
Keywords
chiral epoxides; monooxygenase; peroxidase; epoxide hydrolase; halohydrin dehalogenase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choi, W. J., E. Y. Lee, S. J. Yoon and C. Y. Choi. 1999. Biocatalytic production of chiral epichlorohydrin in organic solvent, J. Biosci. Bioeng. 88, 339-341   DOI   ScienceOn
2 Lee, E. Y., S.-S. Yoo, H. S. Kim, S. J. Lee, Y.-K. Oh and S. Park 2004. Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis, Enzyme Microbial Technol. 35, 624-631   DOI   ScienceOn
3 Matsunaga, I. and Y. Shiro. 2004. Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes, Curro Opin. Chem. BioI. 8, 127-132   DOI   ScienceOn
4 Panke, S., B. Witholt, A. Schmid and M. G. Wubbolts. 1998. Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120, Appl. Environ. Microbiol. 64, 2032-2043
5 Panke,S., Martin Held, M. G. Wubbolts, B. Witholt and A. Schmid. 2000. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase, Biotechnol. Bioeng. 80(1), 33-41   DOI   ScienceOn
6 Suzuki, T., N. Kasai, R. Yamamoto and N. Minamiura. 1992. Isolation of a bacterium assimilating (R)-3-chloro-1,2-propanediol and production of (S)-3-chloro-1,2-propanediol using microbial resolution, J. Ferment. Bioeng. 73, 443-448   DOI   ScienceOn
7 Tokunaga, M., J. F. Larrow, F. Kakiuchi and E. N Jacobsen. 1997. Asymmetric catalysis with water: Efficient kinetic resolution of terminal expoxides by means of catalytic hydrolysis, Science 277, 936-938   DOI   ScienceOn
8 van Loo, B., J. H.L. Spelberg, J. Kingma, T. Sonke, M. G. Wubbolts and D. B. Janssen. 2004. Directed evolution of epoxide hydrolase from A. radiobactertoward higher enantioselectivity by error-prone PCR and DNA shuffling, Chem. BioI. 11, 981-990   DOI   ScienceOn
9 van Rantwijk, F. and R. A. Sheldon. 2000. Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects, Curro Opin. Biotech. 11, 554-564   DOI   ScienceOn
10 Panke, S., M. G. Wubbolts, A. Schmid and B. Witholt. 2000. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase, Biotechnol. Bioeng. 69, 91-100   DOI   ScienceOn
11 Panke, S., V. de Lorenzo, A. Kaiser, B. witholt and M. G. Wubbolts. 1999. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous twoliquid-phase applications, Appl. Environ. Microbiol. 65, 5619-5623
12 Sheldon, R. A. 1993. Chirotechnology, Marcel Dekker. New York
13 Park, J. B. 2005. The use of oxidative enzymes in organic synthesis, Proc. Bioindustry Education Program 2005, Seoul National University, Seoul
14 Park, M. S. 2004. Production of chiral styrene oxide in a recombinant E. coli containing styrene monooxygenase originated from Pseudomonas putida SN-l. M. S. Dissertation, Dept. of Chemical Engineering, Pusan National University, Busan
15 Schmid, A., J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts and B. Witholt. 2001a. Industrial biocatalysis today and tomorrow, Nature 409, 258-268   DOI   ScienceOn
16 Spelberg, J. H. L., van Hylckama J. Vlieg, E. T., Bosma, T., Kellogg, R. M. and Janssen, D. B. 1999. A tandem enzyme reaction to produce optically active halohydrins, epoxides and diols, Tetrahedron: Asymmetry 10, 2863-2870   DOI   ScienceOn
17 Steinreiber, A. and K. Faber. 2001. Microbial epoxide hydrolases for preparative biotransformations, Current Opinion in Biotechnol. 12, 552-558   DOI   ScienceOn
18 Han, J. H. 2004. Production of enantiopure (S)-styrene oxide using a mutant of Pseudomonas putida lacking styrene oxide isomerase. M. S. Dissertation, Dept. of Chemical Engineering, Pusan National University, Busan
19 Hasnaoui, G., Spelberg, J. H. L., de Vries, E., Tang, L., Hauer, B. and Janssen, D. B. 2005. Nitrite-mediated hydrolysis of epoxides catalyzed by halohydrin dehalogenase from Agrobacterium radiobacter AD1: a new tool for the kinetic resolution of epoxides, Tetrahedron: Asymmetry 16, 1685-1692   DOI   ScienceOn
20 Kasai, N., K. Tsujimira, K. Unoura and T. Suzuki. 1990. Degradation of 2,3-dichloro-l-propanol by a Pseudomonas sp, Agric. Bioi. Chem. 54, 3185-3190   DOI
21 O'Leary, N. D., K. E. O'Conner, W. Duetz and A. D. W. Dobson. 2001. Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3, Microbiology 147, 973-979   DOI
22 Manoj KM, Archelas A, Barati J. and R. Furstoss. 2001. Microbiological transformations 45. A gren chemistry preparative scale synthesis of enantiopure building blocks of Eliprodil: elaboraton of a high substrate concentraton epoxide hydrolase-catalyzed hydrolytic kinetic resolution process, Tetrahedron 57, 695-701   DOI   ScienceOn
23 Moussou, P., A. Archelas, J. Baratti and R. Furstoss. 1998. Microbiological transformations. Part 39: Determination of the regioselectivity occurring during oxirane ring opening by epoxide hydrolases: a theoretical analysis and a new method for its determination, Tetrahedron: Asymmetry 9, 1539-1547   DOI   ScienceOn
24 Nakamura, T., F. Yu, W. Mizunashi and J. Watanabe. 1991. Microbial transformation of prochiral 1,3-dichloro-2- propanol into optically active 3-chloro-l,2-propanediol, Agric. BioI. Chem. 55, 1931-1933   DOI
25 Panke, S., A. Meyer, C. M. Huber, B. Witholt and M. G. Wubbolts. 1999. An alkane-responsive expression system for the production of fine chemicals, Appl. Environ. Microbiol. 65, 2324-2332
26 Besse, P. and H. Veschambre. 1994. Chemical and biological synthesis of chiral epoxides, Tetrahedron 50, 8885-8927   DOI   ScienceOn
27 Choi, W. J., C. Y. Choi, J. A. M. de Bont and C. A. G. M Weijers. 1999. Resolution of 1,2-epoxyhexane by Rhodotorula glutinis using a two-phase membrane bioreactor, Appl. Microbial. Biotechnol. 53, 7-11   DOI   ScienceOn
28 Choi, W. J., Choi, C. Y., J. A. M. de Bont and C. A. G. M. Weijers. 2000. Continuous production of enantiopure 1,2epoxyhexane by yeast epoxide hydrolase in a two-phase membrane bioreactor, Appl. Microbial. Biotechnol. 54, 641-646   DOI   ScienceOn
29 Oeij, M., A. Archelas and R. Furstoss. 1998. Microbiological transformations 42. A two-phase preparative scale process for an epoxide hydrolase catalysed resolution of para-bromou - methyl-styrene oxide. Occurrence of a surprising enantioselectivity enhancement, Tetrahedron: Asymmetry 9, 1839-1842   DOI   ScienceOn
30 Choi, W. J., E. C. Huh, H. J. Park, E. Y. Lee and C. Y. Choi. 1998. Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis, Biotechnol. Tech. 12, 225-228   DOI
31 de Vries, E. J. and D. B. Janssen. 2003. Biocatalytic conversion of epoxides, Current Opinion Biotechnol. 14, 414-420   DOI   ScienceOn
32 Faber, K. and W. Kroutil. 2002. Streoselectivity in biocatalytic enantioconvergent reactions and a computer program for its determination, Tetrahedron: Asymmetry 13, 377-382   DOI   ScienceOn
33 Genzel, Y., A. Archelas, Q. B. Broxterman, B. Schulze and R. Furstoss. 2002. Microbiological transformation 50: selection of epoxide hydrolase for enzymatic resolution of 2-, 3-, or 4-pyridyloxirane, J. Mol. Catal. B: Enzy. 16, 217-222   DOI   ScienceOn
34 Schmid, A., K. Hofstetter, H.-J. Feiten, F. Hollman and B. Witholt. 2001b. Integrated biocatalytic synthesis on gram scale: The highly enantioselective preparation of chiral oxiranes with styrene monooxygenase, Adv. Synth. Catal. 343, 1-6   DOI
35 Archelas, A. and R. Furstoss. 2001. Synthetic applications of epoxide hydrolases, Current Opinion in Chem. Biology. 5, 112-119   DOI   ScienceOn
36 Archelas, A., M. Arand, J. Baratti and R. Furstoss. 1999. French Patent Application No. 9905711; (2000), International Patent Application No. PCT/FR00/01217
37 Geigert, J., D. J. Dalietos, D. S. Hirano, T. D. Lee and S. L. Neidleman. 1986. Epoxidation of alkenes by chloroperoxidase catalysis, Biochem. Biophys. Res. Comm. 136, 778-782   DOI   ScienceOn