• Title/Summary/Keyword: dose calibration

Search Result 180, Processing Time 0.025 seconds

Quantitative Determination of Caffeine of Green Tea Seed Ethanol Extract on Anti-obesity in C57BL/6 Mice Fed a High-fat Diet and 3T3-L1 Cells (녹차씨 주정추출물의 카페인 함량 평가와 고지방식이 비만유도 C57BL/6 마우스와 3T3-L1 지방전구세포의 항비만효과)

  • Jung, Myung-A;Lee, Hyunmi;Oh, Dool-Ri;Kim, Yu jin;Bae, Dong Hyuck;Oh, Kyo-nyeo;Shin, Heechan;Kim, Sunoh
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • The study was carried out to examine the anti-obesity effects of 40% ethanol extract from green tea seed (GS) and quantitative determination of caffeine as its major compound. The specificity was satisfied with retention time and UV spectrum by analysis of caffeine using HPLC and comparison with standard compound. It showed a high linearity in the calibration curve with a coefficient of correlation (R2) of 0.9974. The amount of caffeine in GS was about 4.649 mg/g (0.465%) in the three times analysis, and relative standard deviation (RSD) was less than 0.452% by the validated method. The anti-obesity effects of GS were evaluated by using Oil Red O staining in 3T3-L1 adipocytes and body weight, visceral fat and lipid profiles in high fat diet (HFD)-induced C57BL/6 obese mice. Our results indicated that treatment with GS dose-dependently decreased lipid accumulation contents (p<0.001). Moreover, after oral administration for 30 days feeding with HFD-induced obses mice, GS (100 and 300 mg/kg/day) produced a significant decrease in serum total cholesterol (TC), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and visceral fat. Thus, the result of this study indicate that the GS may be a useful resource for the management of obesity.

Gastrointestinal and Hepatic First-pass Effects of Triflusal in Rats (흰쥐에서 트리플루살의 위장관 및 간 초회통과효과)

  • Cho, Hea-Young;Jeong, Tae-Jin;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.265-271
    • /
    • 2001
  • In order to elucidate the influence of intestinal and hepatic first-pass effect on the pharmacokinetics of triflusal, the biotransformation of triflusal in the gastrointestinal tract and liver was designed. Moreover, we tried to establish an HPLC method applicable for bioassay and available to pharmacokinetics, not only with the simultaneous determination of triflusal and its active metabolite, 2-hydroxy-4-trifluoromethyl benzoic acid (HTB), but also with improving sensitivity. After the administration of triflusal (10 mg/kg) and HTB (10 mg/kg) into femoral vein, portal vein (only triflusal) and oral route (only triflusal), pharmacokinetic parameters were investigated from the plasma concentration-time profiles of triflusal and HTB in rats. An HPLC method was developed for the simultaneous determination of triflusal and HTB in rat plasma, urine and bile. The HPLC analysis was carried out using a C18 column and acetonitrile-methanol-water (25:10:65, v/v/v) as the mobile phase and UV detection at 234 nm. Furosemide was used as the internal standard. The calibration curves were linear over the concentration range $0.05-5.0\;{\mu}g/ml$ for triflusal and $0.2-200.0\;{\mu}g/ml$ for HTB with correlation coefficients greater than 0.999 and with intra-day or inter-day coefficients of variation not exceeding 10.0%. This assay procedure was applied to the study of metabolite pharmacokinetics of triflusal and HTB in rats. It was supposed that triflusal was almost metabolized in vivo because urinary and biliary excreted amounts of triflusal could be ignored as it was lower than 1.2% of the administered dose. According to the gastrointestinal and hepatic biotransformation pathways of triflusal, it was found that triflusal was hydrolyzed by about 5% in intestine and metabolized by about 53% in liver, and that the bioavailability of triflusal after oral administration of triflusal was 0.44, and also that the fraction of total elimination rate of triflusal which formed HTB in liver $(F_{mi},\;%)$ was about 98%. These results showed that triflusal was almost metabolized in liver, and the total elimination of triflusal in the body was dependent to the formation rate of HTB from triflusal in liver.

  • PDF

Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System (중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.408-411
    • /
    • 2017
  • In this paper, we propose an integrated control system that measures neutrons, gamma ray, and x-ray. The proposed system is able to monitor and control the data measured and analyzed on the remote or network, and can monitor and control the status of each part of the system remotely without remote control. The proposed system consists of a gamma ray/x-ray sensor part, a neutron sensor part, a main control embedded system part, a dedicated display device and GUI part, and a remote UI part. The gamma ray/x-ray sensor part measures gamma ray and x-ray of low level by using NaI(Tl) scintillation detector. The neutron sensor part measures neutrons using Proportional Counter Detector(low-level neutron) and Ion Chamber Type Detector(high-level neutron). The main control embedded system part detects radiation, samples it in seconds, and converts it into radiation dose for accumulated pulse and current values. The dedicated display device and the GUI part output the radiation measurement result and the converted radiation amount and radiation amount measurement value and provide the user with the control condition setting and the calibration function for the detection part. The remote UI unit collects and stores the measured values and transmits them to the remote monitoring system. In order to evaluate the performance of the proposed system, the measurement uncertainty of the neutron detector was measured to less than ${\pm}8.2%$ and the gamma ray and x-ray detector had the uncertainty of less than 7.5%. It was confirmed that the normal operation was not less than ${\pm}15$ percent of the international standard.

Monitoring of Commercial Red Pepper Powders for Their Irradiation Status (물리적 확인시험법을 이용한 시판 유통 중인 고춧가루의 방사선 조사여부 판별 모니터링)

  • Jeong, Mi-Seon;Ahn, Jae-Jun;Akram, Kashif;Kim, Gui-Ran;Kim, Hyun-Ku;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.673-679
    • /
    • 2012
  • Ten commercially available red pepper powders were investigated using photostimulated-luminescence (PSL), thermoluminescence (TL) and electron spin resonance (ESR) analyses to confirm their irradiation status. The application of PSL, TL, and ESR analyses was also confirmed by in-house irradiation. In PSL-based screening, all samples gave negative photon counts (<700 PCs). The PSL calibration dose (1 kGy) showed a low sensitivity of 4 samples, while the others provided reliable screening results. TL glow curves demonstrated maximum peaks after $250^{\circ}C$ for the 6 samples; however 4 samples gave complex TL glow curves with maximum peaks in the range of $185-260^{\circ}C$ (radiation-specific), which could be the effect of an irradiated component in low concentration as the TL ratios of all samples were <0.1. Radiation-specific ESR features were absent in the all commercial samples. Variable irradiation detection properties were found; where the TL analysis showed the possible presence of an irradiated component in 4 samples requiring further monitoring and investigation.

Bioequivalence of Atorva Tablet® to Lipitor Tablet® (Atorvastatin 20 mg) (리피토정® (아토르바스타틴 20 mg)에 대한 아토르바정®의 생물학적동등성)

  • Lim, Hyun-Kyun;Lee, Tae-Ho;Lee, Jae-Hyun;Youm, Jeong-Rok;Song, Jin-Ho;Han, Sang-Beom
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.135-142
    • /
    • 2008
  • The present study describes the evaluation of the bioequivalence of two atorvastatin tablets, Lipitor $Tablet^{(R)}$ (Pfizer, reference drug) and Atorva $Tablet^{(R)}$ (Yuhan, test drug), according to the guidelines of Korea Food and Drug Administration (KFDA). Forty-nine healthy male Korean volunteers received each medicine at the atorvastatin dose of 40 mg in a $2{\times}2$ crossover study with a two weeks washout interval. After drug administration, serial blood samples were collected at a specific time interval from 0-48 hours. The plasma atorvastatin concentrations were monitored by an high performance liquid chromatography -tandem mass spectrometer (LC-MS/MS) employing electrospray ionization technique and operating in multiple reaction monitoring (MRM) and positive ion mode. The total chromatographic run time was 4.5 min and calibration curves were linear over the concentration range of 0.1-100 ng/mL for atorvastatin. The method was validated for selectivity, sensitivity, linearity, accuracy and precision. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 48hr) was calculated by the linear log trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were complied trom the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for Atorva $Tablet^{(R)}$ / Lipitor $Tablet^{(R)}$ were ${\log}\;0.9413{\sim}{\log}\;1.0179$ and ${\log}\;0.831{\sim}{\log}\;1.0569$, respectively. These values were within the acceptable bioequivalence intervals of ${\log}\;0.8{\sim}{\log}\;1.25$. Based on these statistical considerations, it was concluded that the test drug, Atorva $Tablet^{(R)}$ was bioequivalent to the reference drug, Lipitor $Tablet^{(R)}$.

Bioequivalence of pioglitazone tablet to Actos® tablet (Pioglitazone 30 mg) (액토스정®(피오글리타존 30 mg)에 대한 염산피오글리타존정의 생물학적동등성)

  • Yeom, Hyesun;Lee, Tae Ho;Youm, Jeong-Rok;Song, Jin-Ho;Han, Sang Beom
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.101-108
    • /
    • 2009
  • The bioequivalence of two pioglitazone tablets, Actos$^{(R)}$ tablet (Takeda Chemical Industries, reference drug) and Pioglitazone tablet (Boryung Company, test drug) was evaluated according to the guidelines of Korea Food and Drug Administration. Twenty-eight healthy male Korean volunteers received each medicine (pioglitazone dose of 30 mg) in a $2{\times}2$ crossover study with one week washout interval. After drug administration, blood samples were collected at specific time intervals from 0-36 hours. The plasma concentrations of pioglitazone were determined by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total chromatographic run time was 5 min and calibration curves were linear over the concentration range of 5-2000 ng/mL for pioglitazone. The method was validated for selectivity, sensitivity, linearity, accuracy and precision. The pharmacokinetic parameters were determined from the plasma concentration-time profiles of both formulations. The primary calculated pharmacokinetic parameters were compared statistically to evaluate bioequivalence between the two preparations. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for Pioglitazone tablet and Actos$^{(R)}$ tablet were log0.9422~log1.1040 and log0.9200~log1.1556, respectively. Based on the statistical considerations, we can conclude that the test drug, Pioglitazone tablet was bioequivalent to the reference drug, Actos$^{(R)}$ tablet.

Partial transmission block production for real efficient method of block and MLC (Partial transmission block 제작 시 real block과 MLC를 이용한 방법 중 효율적인 방법에 대한 고찰)

  • Choi JiMin;Park JuYoung;Ju SangGyu;Ahn JongHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.19-24
    • /
    • 2004
  • Introduction : The Vaginal, the urethra, the vulva and anal cancer avoid the many dose to femur head and the additional treatment is necessary in inguinal LN. The partial transmission block to use inguinal LN addition there is to a method which it treats and produce partial transmission block a method and the MLC which to it analyzes. Material & Methode : The Inguinal the LN treatment patient partial transmission it used block and the MLC in the object and with solid water phantom with the patient it reappeared the same depth. In order to analyze the error of the junction the EDR2 (Extended dose range, the Kodak and the U.S) it used the Film and it got film scanner it got the beam profile. The partial transmission block and the MLC bias characteristic, accuracy and stability of production for, it shared at hour and comparison it analyzed. Result : The partial the transmission block compares in the MLC and the block production is difficult and production hour also above 1 hours. The custom the block the place where it revises the error of the junction is a difficult problem. If use of the MLC the fabrication will be break and only the periodical calibration of the MLC it will do and it will be able to use easily. Conclusion : The Inguinal there is to LN treatment and partial transmission block and the MLC there is efficiency of each one but there is a place where the junction of block for partial transmission block the production hour is caught long and it fixes and a point where the control of the block is difficult. like this problem it transfers with the MLC and if it treats, it means the effective treatment will be possible.

  • PDF

Study on the calibration phantom and metal artifacts using virtual monochromatic images from dual energy CT (듀얼 에너지 CT의 가상 단색 영상을 이용한 영상 교정 팬텀과 금속 인공음영에 관한 연구)

  • Lee, Jun seong;Lee, Seung hoon;Park, Ju gyung;Lee, Sun young;Kim, Jin ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Purpose: To evaluate the image quality improvement and dosimetric effects on virtual monochromatic images of a Dual Source-Dual Energy CT(DS-DECT) for radiotherapy planning. Materials and Methods: Dual energy(80/Sn 140 kVp) and single energy(120 kVp) scans were obtained with dual source CT scanner. Virtual monochromatic images were reconstructed at 40-140 keV for the catphan phantom study. The solid water-equivalent phantom for dosimetry performs an analytical calculation, which is implemented in TPS, of a 10 MV, $10{\times}10cm^2$ photon beam incident into the solid phantom with the existence of stainless steel. The dose profiles along the central axis at depths were discussed. The dosimetric consequences in computed treatment plans were evaluated based on polychromatic images at 120 kVp. Results: The magnitude of differences was large at lower monochromatic energy levels. The measurements at over 70 keV shows stable HU for polystyrene, acrylic. For CT to ED conversion curve, the shape of the curve at 120 kVp was close to that at 80 keV. 105 keV virtual monochromatic images were more successful than other energies at reducing streak artifacts, which some residual artifacts remained in the corrected image. The dose-calculation variations in radiotherapy treatment planning do not exceed ${\pm}0.7%$. Conclusion: Radiation doses with dual energy CT imaging can be lower than those with single energy CT imaging. The virtual monochromatic images were useful for the revision of CT number, which can be improved for target coverage and electron densities distribution.

  • PDF

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

The Evaluation of SUV Variations According to the Errors of Entering Parameters in the PET-CT Examinations (PET/CT 검사에서 매개변수 입력오류에 따른 표준섭취계수 평가)

  • Kim, Jia;Hong, Gun Chul;Lee, Hyeok;Choi, Seong Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • Purpose: In the PET/CT images, The SUV (standardized uptake value) enables the quantitative assessment according to the biological changes of organs as the index of distinction whether lesion is malignant or not. Therefore, It is too important to enter parameters correctly that affect to the SUV. The purpose of this study is to evaluate an allowable error range of SUV as measuring the difference of results according to input errors of Activity, Weight, uptake Time among the parameters. Materials and Methods: Three inserts, Hot, Teflon and Air, were situated in the 1994 NEMA Phantom. Phantom was filled with 27.3 MBq/mL of 18F-FDG. The ratio of hotspot area activity to background area activity was regulated as 4:1. After scanning, Image was re-reconstructed after incurring input errors in Activity, Weight, uptake Time parameters as ${\pm}5%$, 10%, 15%, 30%, 50% from original data. ROIs (region of interests) were set one in the each insert areas and four in the background areas. $SUV_{mean}$ and percentage differences were calculated and compared in each areas. Results: $SUV_{mean}$ of Hot. Teflon, Air and BKG (Background) areas of original images were 4.5, 0.02. 0.1 and 1.0. The min and max value of $SUV_{mean}$ according to change of Activity error were 3.0 and 9.0 in Hot, 0.01 and 0.04 in Teflon, 0.1 and 0.3 in Air, 0.6 and 2.0 in BKG areas. And percentage differences were equally from -33% to 100%. In case of Weight error showed $SUV_{mean}$ as 2.2 and 6.7 in Hot, 0.01 and 0.03 in Tefron, 0.09 and 0.28 in Air, 0.5 and 1.5 in BKG areas. And percentage differences were equally from -50% to 50% except Teflon area's percentage deference that was from -50% to 52%. In case of uptake Time error showed $SUV_{mean}$ as 3.8 and 5.3 in Hot, 0.01 and 0.02 in Teflon, 0.1 and 0.2 in Air, 0.8 and 1.2 in BKG areas. And percentage differences were equally from 17% to -14% in Hot and BKG areas. Teflon area's percentage difference was from -50% to 52% and Air area's one was from -12% to 20%. Conclusion: As shown in the results, It was applied within ${\pm}5%$ of Activity and Weight errors if the allowable error range was configured within 5%. So, The calibration of dose calibrator and weighing machine has to conduct within ${\pm}5%$ error range because they can affect to Activity and Weight rates. In case of Time error, it showed separate error ranges according to the type of inserts. It showed within 5% error when Hot and BKG areas error were within ${\pm}15%$. So we have to consider each time errors if we use more than two clocks included scanner's one during the examinations.

  • PDF