• Title/Summary/Keyword: doped GaAs

Search Result 286, Processing Time 0.027 seconds

Two-Dimensional Analysis of the Characteristics at Heterojunction of MODFET Using FDM (유한 차분법을 이용한 MODFET의 이차원적 해석)

  • Jung, Hak-Gi;Lee, Moon-Key;Kim, Bong-Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1373-1379
    • /
    • 1988
  • This paper describes a two-dimensional analysis of the potential distribution and electron concentration of the MODFET at channel using FDM. More exact analysis can be obtained by two-dimensional analysis which considers parasitic effects ignored in one-dimensional analysis. Using Poisson and Shrodinger equations, the potential distribution and the wave function are calculated within a constant error bound. As a result, the relations between the thickness of spacer, doping concentration of (n) AlGaAs layer, and the sheet density of the 2DEG (2 Dimensional Electron Gas) of MODFET at channel are suggested quantitively. The sheet density of the 2DEG is increased as the thickness of the spacer is decreased of the doping concentration of the (n)AlGaAs layer is lowered.

  • PDF

Properties and SPICE modeling for a Schottky diode fabricated on the cracked GaN epitaxial layers on (111) silicon

  • Lee, Heon-Bok;Baek, Kyong-Hum;Lee, Myung-Bok;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.96-100
    • /
    • 2005
  • The planar Schottky diodes were fabricated and modeled to probe the device applicability of the cracked GaN epitaxial layer on a (111) silicon substrate. On the unintentionally n-doped GaN grown on silicon, we deposited Ti/Al/Ni/Au as the ohmic metal and Pt as the Schottky metal. The ohmic contact achieved a minimum contact resistivity of $5.51{\times}10.5{\Omega}{\cdot}cm^{2}$ after annealing in an $N_{2}$ ambient at $700^{\circ}C$ for 30 sec. The fabricated Schottky diode exhibited the barrier height of 0.7 eV and the ideality factor was 2.4, which are significantly lower than those parameters of crack free one. But in photoresponse measurement, the diode showed the peak responsivity of 0.097 A/W at 300 nm, the cutoff at 360 nm, and UV/visible rejection ratio of about $10^{2}$. The SPICE(Simulation Program with Integrated Circuit Emphasis) simulation with a proposed model, which was composed with one Pt/GaN diode and three parasitic diodes, showed good agreement with the experiment.

The electrical and optical properties of the Ga-doped ZnO thin films grown on transparent sapphire substrate (투명 사파이어 기판위에 성장시킨 Ga-doped ZnO 박막의 전기적·광학적 특성)

  • Chung, Yeun Gun;Joung, Yang Hee;Kang, Seong Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1213-1218
    • /
    • 2013
  • In this study, Ga-doped ZnO (GZO) thin films were fabricated on transparent sapphire substrate by RF magnetron sputtering method and then investigated the effect of various substrate temperature on the electrical, optical properties and characteristic of crystallization of the GZO thin films. The electrical property indicated that the lowest resistivity ($4.18{\times}10^{-4}{\Omega}cm$), the highest carrier concentration ($6.77{\times}10^{20}cm^{-3}$) and Hall mobility ($22cm^2/Vs$) were obtained in the GZO thin film fabricated at $300^{\circ}C$. And for this condition, the highest c-axis orientation and (002) diffraction peak which exhibits a FWHM of $0.34^{\circ}$ were obtained. From the results of AFM measurements, it is known that the highest crystallinity is observed at $300^{\circ}C$. The transmittance spectrum in the visible range was approximately 80 % regardless of substrate temperature. The optical band-gap showed the blue-shift as increasing the substrate temperature to $300^{\circ}C$, and they are all larger than the band gap of bulk ZnO (3.3 eV). It can be explained by the Burstein-Moss effect.

The Influence of Al Underlayer on the Optical and Electrical Properties of GZO/Al Thin Films

  • Kim, Sun-Kyung;Kim, So-Young;Kim, Seung-Hong;Jeon, Jae-Hyun;Gong, Tae-Kyung;Kim, Daeil;Choi, Dong-Hyuk;Son, Dong-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.321-323
    • /
    • 2013
  • 100 nm thick Ga doped ZnO (GZO) thin films were deposited with DC and RF magnetron sputtering at room temperature on glass substrate and Al coated glass substrate, respectively. and the effect of the Al underlayer on the optical and electrical properties of the GZO films was investigated. As-deposited GZO single layer films had an optical transmittance of 80% in the visible wavelength region, and sheet resistance of 1,516 ${\Omega}/{\Box}$, while the optical and electrical properties of GZO/Al bi-layered films were influenced by the thickness of the Al buffer layer. GZO films with 2 nm thick Al film show a lower sheet resistance of 990 ${\Omega}/{\Box}$, and an optical transmittance of 78%. Based on the figure of merit (FOM), it can be concluded that the thin Al buffer layer effectively increases the performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.

Characterization of epitaxial layers on beta-gallium oxide single crystals grown by EFG method as a function of different crystal faces and off-angle (EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면, off-angle에 따른 epitaxial layer의 특성 분석)

  • Min-Ji Chae;Sun-Yeong Seo;Hui-Yeon Jang;So-Min Shin;Dae-Uk Kim;Yun-Jin Kim;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Hae-Yong Lee;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.109-116
    • /
    • 2024
  • β-Ga2O3 is a representative ultra-wide bandgap (UWBG) semiconductor that has attracted much attention for power device applications due to its wide-bandgap of 4.9 eV and high-breakdown voltage of 8 MV/cm. In addition, because solution growth is possible, it has advantages such as fast growth rate and lower production cost compared to SiC and GaN [1-2]. In this study, we have successfully grown Si-doped 10 mm thick Si-doped β-Ga2O3 single crystals by the EFG (Edge-defined Film-fed Growth) method. The growth direction and growth principal plane were set to [010] / (010), respectively, and the growth speed was 7~20 mm/h. The as-grown β-Ga2O3 single crystal was cut into various crystal planes (001, 100, ${\bar{2}}01$) and off-angles (1o, 3o, 4o), and then surface processed. After processed, the homoepitaxial layer was grown on the epi-ready substrate using the HVPE (Halide vapor phase epitaxy) method. The processed samples and the epi-layer grown samples were analyzed by XRD, AFM, OM, and Etching to compare the surface properties according to the crystal plane and off-angle.

Comparisons of lasing characteristics of InGaAs quantum-dot and quantum well laser diodes (InGaAs 양자점 레이저 다이오드와 양자우물 레이저 다이오드의 특성 비교)

  • Jung, Kyung-Wuk;Kim, Kwang-Woong;Ryu, Sung-Pil;Cho, Nam-Ki;Park, Sung-Jun;Song, Jin-Dong;Choi, Won-Jun;Lee, Jung-Il;Yang, Hae-Suk
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.371-376
    • /
    • 2007
  • We have investigated the lasing characteristics of the InGaAs quantum dot laser diode (QD-LD) and InGaAs quantum well laser diode (QW-LD) operated at the 980 nm wavelength range. The 980-nm lasers are used as a pumping source for a erbium-doped fiber amplifier (EDFA) and it shows high efficiency in long-haul optical fiber network. We have compared the threshold current density, the characteristic temperature, the optical power and the internal efficiency of QD-LD and QW-LD under a pulsed current condition. The QD-LD shows superior performances to the QW-LD. Further optimization of a LD structure is expected to the superior performances of a QD-LD.

A GaAs Power MESFET Operating at 3.3V Drain Voltage for Digital Hand-Held Phone

  • Lee, Jong-Lam;Kim, Hae-Cheon;Mun, Jae-Kyung;Kwon, Oh-Seung;Lee, Jae-Jin;Hwang, In-Duk;Park, Hyung-Moo
    • ETRI Journal
    • /
    • v.16 no.4
    • /
    • pp.1-11
    • /
    • 1995
  • A GaAs power metal semiconductor field effect transistor (MESFET) operating at a voltage as low as 3.3V has been developed with the best performance for digital handheld phone. The device has been fabricated on an epitaxial layer with a low-high doped structure grown by molecular beam epitaxy. The MESFET, fabricated using $0.8{\mu}m$ design rule, showed a maximum drain current density of 330 mA/mm at $V_{gs}$ =0.5V and a gate-to-drain breakdown volt-age of 28 V. The MESFET tested at a 3.3 V drain bias and a 900 MHz operation frequency displayed an output power of 32.5-dBm and a power added efficiency of 68%. The associate power gain at 20 dBm input power and the linear gain were 12.5dB and 16.5dB, respectively. Two tone testing measured at 900.00MHz and 900.03MHz showed that a third-order intercept point is 49.5 dBm. The power MESFET developed in this work is expected to be useful as a power amplifying device for digital hand-held phone because the high linear gain can deliver a high power added efficiency in the linear operation region of output power and the high third-order intercept point can reduce the third-order intermodulation.

  • PDF

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF

Spectroscopic Properties of Er-doped Sulfide Fiber (Er 첨가 황화물계 광섬유의 제조 및 분광학적 특성)

  • Choi, Yong-Gyu;Lim, Dong-Sung;Kim, Kyong-Hon;Park, Se-Ho;Heo, Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.781-786
    • /
    • 2000
  • An Er-doped sulfide fiber was drawn, and its spectroscopic properties were analyzed. Compositions of a 1000 ppmwt Er3+-doped core and an undoped clad were Ge30-Ga1-Asg-S61 and Ge30-As8-S62, in at.%, respectively. Refractive index of the core composition was approximately 0.01 high than that of the clad. In order to enhance the mechanical stability as well as to prevent infiltration of impurity ions such as OH-, an UV-curable polymer was used for the coating. The optical loss of a fiber formed directly from a polymer coated core rod without cladding was ∼15 dB/m at 1.06$\mu\textrm{m}$. In the case of a fiber with core/clad structure, the optical loss was so high that the stimulated emission of erbium fluorescence was not evident. It is believed that presence of inhomogeneous core/clad interface and crystalline aggregates precipitated in the clad region were responsible for the high optical loss. On the other hand, fluorescence characteristics of Er3+ embedded in the core region were more or loss deteriorate compared to fiber preform, which is attributed to the redistribution of the Er ions along with the partial crystallization of the core glass during the fiberization process.

  • PDF