Browse > Article
http://dx.doi.org/10.4313/TEEM.2013.14.6.321

The Influence of Al Underlayer on the Optical and Electrical Properties of GZO/Al Thin Films  

Kim, Sun-Kyung (School of Materials Science and Engineering, University of Ulsan)
Kim, So-Young (School of Materials Science and Engineering, University of Ulsan)
Kim, Seung-Hong (School of Materials Science and Engineering, University of Ulsan)
Jeon, Jae-Hyun (School of Materials Science and Engineering, University of Ulsan)
Gong, Tae-Kyung (School of Materials Science and Engineering, University of Ulsan)
Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
Choi, Dong-Hyuk (Dongkook Ind., Co., Ltd.)
Son, Dong-Il (Dongkook Ind., Co., Ltd.)
Publication Information
Transactions on Electrical and Electronic Materials / v.14, no.6, 2013 , pp. 321-323 More about this Journal
Abstract
100 nm thick Ga doped ZnO (GZO) thin films were deposited with DC and RF magnetron sputtering at room temperature on glass substrate and Al coated glass substrate, respectively. and the effect of the Al underlayer on the optical and electrical properties of the GZO films was investigated. As-deposited GZO single layer films had an optical transmittance of 80% in the visible wavelength region, and sheet resistance of 1,516 ${\Omega}/{\Box}$, while the optical and electrical properties of GZO/Al bi-layered films were influenced by the thickness of the Al buffer layer. GZO films with 2 nm thick Al film show a lower sheet resistance of 990 ${\Omega}/{\Box}$, and an optical transmittance of 78%. Based on the figure of merit (FOM), it can be concluded that the thin Al buffer layer effectively increases the performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.
Keywords
Ga doped ZnO; Al; Optical transmittance; Sheet resistance; Figure of merit;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Kim, S. Heo, H. Lee, Y. Lee, I. Kim, M. Kang, D. Choi, B. Lee, M. Kim, D. Kim, Appl. Surf. Sci. 258. 3903 (2012) [DOI: http:// dx.doi.org/10.1016/j.apsusc.2011.12.057].   DOI   ScienceOn
2 C. H. Huang, D. Y. Chen, C. Y. Hsu, Ceramics International, 38, 1057 (2012) [DOI: http://dx.doi.org/10.1016/j.ceramint.2011.08.031].   DOI   ScienceOn
3 S. Song, T. Yang, Y. Xin, L. Jiang, Y. Li, Z. Pang, M. Lv, S. Han. Curr. Appl. Phys. 10, 452 (2010) [DOI: http://dx.doi. org/10.1016/j.cap.2009.07.002].   DOI   ScienceOn
4 M. Sawada, M. Higuchi, S. Kondo, H. Saka, Jpn. J. Appl. Phys. 40, 3332 (2001) [DOI: http://dx.doi.org/10.1143/JJAP.40.3332].   DOI
5 L. Gong, Z. Ye, Thin Solid Films, 519, 3870 (2011) [DOI: http:// dx.doi.org/10.1016/j.tsf.2011.01.396].   DOI   ScienceOn
6 J. Lee, J. Yang, J. Chae, J. Park, J. Choi, H. Park, D. Kim, Optics Comm. 282, 2362 (2009) [DOI : http://dx.doi.org/10.1016/j.optcom.2008.12.044].   DOI   ScienceOn
7 H. M. Lee, Y. J. Lee, I. S. Kim, M. S. Kang, S. B. Heo, Y. S. Kim, D. Kim, Vacuum, 86, 1494 (2012) [DOI: http://dx.doi.org/10.1016/j.vacuum.2012.02.041].   DOI   ScienceOn
8 Y. Kim, J. Park, D. Kim, Vacuum, 82, 574 (2008) [DOI: http:// dx.doi.org/10.1016/j.vacuum.2007.08.011].   DOI   ScienceOn
9 J. Kim, C. Shin, C. Jeong, Y. Kwon, J. Park, D. Kim, Nucl. Instrum. Methods B. 268, 131 (2010) [DOI: http://dx.doi.org/10.1016/j.nimb.2009.10.180]   DOI   ScienceOn
10 D. Kim, Optics Comm. 285, 1212 (2012) [DOI: http://dx.doi.org/10.1016/ j.optcom.2011.10.043].   DOI   ScienceOn