• Title/Summary/Keyword: dominating set

Search Result 69, Processing Time 0.02 seconds

Maximum Degree Vertex Domatic Set Algorithm for Domatic Number Problem (도메틱 수 문제에 관한 최대차수 정점 지배집합 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.63-70
    • /
    • 2015
  • In the absence of a polynomial time algorithm capable of obtaining the exact solutions to it, the domatic number problem (DNP) of dominating set (DS) has been regarded as NP-complete. This paper suggests polynomial-time complexity algorithm about DNP. In this paper, I select a vertex $v_i$ of the maximum degree ${\Delta}(G)$ as an element of a dominating set $D_i,i=1,2,{\cdots},k$, compute $D_{i+1}$ from a simplified graph of $V_{i+1}=V_i{\backslash}D_i$, and verify that $D_i$ is indeed a dominating set through $V{\backslash}D_i=N_G(D_i)$. When applied to 15 various graphs, the proposed algorithm has succeeded in bringing about exact solutions with polynomial-time complexity O(kn). Therefore, the proposed domatic number algorithm shows that the domatic number problem is in fact a P-problem.

A Dominating Set Algorithm (지배집합 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.121-129
    • /
    • 2013
  • This paper proposes a linear-time algorithm that has been designed to obtain an accurate solution for Dominating Set (DS) problem, which is known to be NP-complete due to the deficiency of polynomial-time algorithms that successfully derive an accurate solution to it. The proposed algorithm does so by repeatedly assigning vertex v with maximum degree ${\Delta}(G)$among vertices adjacent to the vertex v with minimum degree ${\delta}(G)$ to Minimum Independent DS (MIDS) as its element and removing all the incident edges until no edges remain in the graph. This algorithm finally transforms MIDS into Minimum DS (MDS) and again into Minimum Connected DS (MCDS) so as to obtain the accurate solution to all DS-related problems. When applied to ten different graphs, it has successfully obtained accurate solutions with linear time complexity O(n). It has therefore proven that Dominating Set problem is rather a P-problem.

THE SPLIT AND NON-SPLIT TREE (D, C)-NUMBER OF A GRAPH

  • P.A. SAFEER;A. SADIQUALI;K.R. SANTHOSH KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.511-520
    • /
    • 2024
  • In this paper, we introduce the concept of split and non-split tree (D, C)- set of a connected graph G and its associated color variable, namely split tree (D, C) number and non-split tree (D, C) number of G. A subset S ⊆ V of vertices in G is said to be a split tree (D, C) set of G if S is a tree (D, C) set and ⟨V - S⟩ is disconnected. The minimum size of the split tree (D, C) set of G is the split tree (D, C) number of G, γχST (G) = min{|S| : S is a split tree (D, C) set}. A subset S ⊆ V of vertices of G is said to be a non-split tree (D, C) set of G if S is a tree (D, C) set and ⟨V - S⟩ is connected and non-split tree (D, C) number of G is γχST (G) = min{|S| : S is a non-split tree (D, C) set of G}. The split and non-split tree (D, C) number of some standard graphs and its compliments are identified.

ON GRAPHS WITH EQUAL CHROMATIC TRANSVERSAL DOMINATION AND CONNECTED DOMINATION NUMBERS

  • Ayyaswamy, Singaraj Kulandaiswamy;Natarajan, Chidambaram;Venkatakrishnan, Yanamandram Balasubramanian
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.843-849
    • /
    • 2012
  • Let G = (V, E) be a graph with chromatic number ${\chi}(G)$. dominating set D of G is called a chromatic transversal dominating set (ctd-set) if D intersects every color class of every ${\chi}$-partition of G. The minimum cardinality of a ctd-set of G is called the chromatic transversal domination number of G and is denoted by ${\gamma}_{ct}$(G). In this paper we characterize the class of trees, unicyclic graphs and cubic graphs for which the chromatic transversal domination number is equal to the connected domination number.

ON THE DOMINATION NUMBER OF A GRAPH AND ITS SQUARE GRAPH

  • Murugan, E.;Joseph, J. Paulraj
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.391-402
    • /
    • 2022
  • For a given graph G = (V, E), a dominating set is a subset V' of the vertex set V so that each vertex in V \ V' is adjacent to a vertex in V'. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by γ(G). For an integer k ≥ 1, the k-th power Gk of a graph G with V (Gk) = V (G) for which uv ∈ E(Gk) if and only if 1 ≤ dG(u, v) ≤ k. Note that G2 is the square graph of a graph G. In this paper, we obtain some tight bounds for the sum of the domination numbers of a graph and its square graph in terms of the order, order and size, and maximum degree of the graph G. Also, we characterize such extremal graphs.

Distributed Construction of the Multiple-Ring Topology of the Connected Dominating Set for the Mobile Ad Hoc Networks: Boltzmann Machine Approach (무선 애드혹 망을 위한 연결 지배 집합 다중-링 위상의 분산적 구성-볼츠만 기계적 접근)

  • Park, Jae-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.3
    • /
    • pp.226-238
    • /
    • 2007
  • In this paper, we present a novel fully distributed topology control protocol that can construct the multiple-ring topology of Minimal Connected Dominating Set (MCDS) as the transport backbone for mobile ad hoc networks. It makes a topology from the minimal nodes that are chosen from all the nodes, and the constructed topology is comprised of the minimal physical links while preserving connectivity. This topology reduces the interference. The all nodes work as the nodes of the distributed parallel Boltzmann machine, of which the objective function is consisted of two Boltzmann factors: the link degree and the connection domination degree. To define these Boltzmann factors, we extend the Connected Dominating Set into a fuzzy set, and also define the fuzzy set of nodes by which the multiple-ring topology can be constructed. To construct the transport backbone of the mobile ad hoc network, the proposed protocol chooses the nodes that are the strong members of these two fuzzy sets as the clusterheads. We also ran simulations to provide the quantitative comparison against the related works in terms of the packet loss rate and the energy consumption rate. As a result, we show that the network that is constructed by the proposed protocol has far better than the other ones with respect to the packet loss rate and the energy consumption rate.

A CORRECTION TO A PAPER ON ROMAN κ-DOMINATION IN GRAPHS

  • Mojdeh, Doost Ali;Moghaddam, Seyed Mehdi Hosseini
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.469-473
    • /
    • 2013
  • Let G = (V, E) be a graph and k be a positive integer. A $k$-dominating set of G is a subset $S{\subseteq}V$ such that each vertex in $V{\backslash}S$ has at least $k$ neighbors in S. A Roman $k$-dominating function on G is a function $f$ : V ${\rightarrow}$ {0, 1, 2} such that every vertex ${\upsilon}$ with $f({\upsilon})$ = 0 is adjacent to at least $k$ vertices ${\upsilon}_1$, ${\upsilon}_2$, ${\ldots}$, ${\upsilon}_k$ with $f({\upsilon}_i)$ = 2 for $i$ = 1, 2, ${\ldots}$, $k$. In the paper titled "Roman $k$-domination in graphs" (J. Korean Math. Soc. 46 (2009), no. 6, 1309-1318) K. Kammerling and L. Volkmann showed that for any graph G with $n$ vertices, ${{\gamma}_{kR}}(G)+{{\gamma}_{kR}(\bar{G})}{\geq}$ min $\{2n,4k+1\}$, and the equality holds if and only if $n{\leq}2k$ or $k{\geq}2$ and $n=2k+1$ or $k=1$ and G or $\bar{G}$ has a vertex of degree $n$ - 1 and its complement has a vertex of degree $n$ - 2. In this paper we find a counterexample of Kammerling and Volkmann's result and then give a correction to the result.

Velocity-based Multi-Connected Dominating Set for VANET (VANET 환경을 위한 속도 기반 다중 CDS 생성 기법)

  • Lee, Kyu-Nam;Yu, Ji-Eun;Lee, Won-Jun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.178-180
    • /
    • 2012
  • 차량간 무선 통신 환경인 VANET에서 중요하게 여겨지는 문제점 중에 하나는 메시지 브로드캐스팅시 발생 가능한 메시지 폭주 현상(Broadcasting Storm)이다. 최근 무선 애드 혹 네트워크나 이동 애드 혹 네트워크(MANET) 환경에서 이를 해결하기 위해 Connected Dominating Set(CDS) 기법을 제안하여 최대한 중복된 메시지가 전달되지 않도록 하였다. MANET의 한 분야인 차량 애드 혹 네트워크(VANET)에서도 이러한 CDS 가상 백본 망을 이용하면 효율적인 메시지 전파를 기대할 수 있지만, 그 동안의 CDS 생성 기법은 노드의 속도와 방향이 고려되지 않았기 때문에 안정적인 CDS 망을 유지할 수 없다. 본 논문에서는 VANET 환경에 적합한 CDS 환경을 만들기 위해 노드의 이동성을 고려한 기존의 Timer-based CDS 생성 기법에 속도와 방향 두 가지 인자를 추가하여 Velocity-based Multi-CDS(VM-CDS) 기법을 제안하였고, 시뮬레이션을 통해 기존 방안보다 더 안정적으로 유지됨을 입증하였다.

TECDS Protocol for Wireless Ad Hoc Networks (무선 에드혹 네트워크를 위한 타이머를 이용한 CDS 구축)

  • Kim, Bo-Nam;Yang, Jun-Mo
    • The KIPS Transactions:PartC
    • /
    • v.14C no.4
    • /
    • pp.365-370
    • /
    • 2007
  • Connected Dominating Set(CDS) has been used as a virtual backbone in wireless ad hoc networks by numerous routing and broadcast protocols. Although computing minimum CDS is known to be NP-hard, many protocols have been proposed to construct a sub-optimal CDS. However, these protocols are either too complicated, needing non- local information, not adaptive to topology changes, or fail to consider the difference of energy consumption for nodes in and outside of the CDS. In this paper, we present two Timer-based Energy-aware Connected Dominating Set Protocols(TECDS). The energy level at each node is taken into consideration when constructing the CDS. Our protocols are able to maintain and adjust the CDS when network topology is changed. The simulation results have shown that our protocols effectively construct energy-aware CDS with very competitive size and prolong the network operation under different level of nodal mobility.

A Multi-Start Local Search Algorithm Finding Minimum Connected Dominating Set in Wireless Sensor Networks (무선 센서 네트워크에서 최소연결지배집합 선출을 위한 다중시작 지역탐색 알고리즘)

  • Kang, Seung-Ho;Jeong, Min-A;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1142-1147
    • /
    • 2015
  • As a method to increase the scalability and efficiency of wireless sensor networks, a scheme to construct networks hierarchically has received considerable attention among researchers. Researches on the methods to construct wireless networks hierarchically have been conducted focusing on how to select nodes such that they constitute a backbone network of wireless network. Nodes comprising the backbone network should be connected themselves and can cover other remaining nodes. A problem to find the minimum number of nodes which satisfy these conditions is known as the minimum connected dominating set (MCDS) problem. The MCDS problem is NP-hard, therefore there is no efficient algorithm which guarantee the optimal solutions for this problem at present. In this paper, we propose a novel multi-start local search algorithm to solve the MCDS problem efficiently. For the performance evaluation of the proposed method, we conduct extensive experiments and report the results.