• 제목/요약/키워드: divisorial ideal

검색결과 7건 처리시간 0.017초

GRADED INTEGRAL DOMAINS IN WHICH EACH NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

  • Chang, Gyu Whan;Hamdi, Haleh;Sahandi, Parviz
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.1041-1057
    • /
    • 2019
  • Let ${\Gamma}$ be a nonzero commutative cancellative monoid (written additively), $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}$ $R_{\alpha}$ be a ${\Gamma}$-graded integral domain with $R_{\alpha}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma}$, and $S(H)=\{f{\in}R{\mid}C(f)=R\}$. In this paper, we study homogeneously divisorial domains which are graded integral domains whose nonzero homogeneous ideals are divisorial. Among other things, we show that if R is integrally closed, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is an h-local $Pr{\ddot{u}}fer$ domain whose maximal ideals are invertible, if and only if R satisfies the following four conditions: (i) R is a graded-$Pr{\ddot{u}}fer$ domain, (ii) every homogeneous maximal ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is contained in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal of R has only finitely many minimal prime ideals. We also show that if R is a graded-Noetherian domain, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is a divisorial domain of (Krull) dimension one.

PRUFER ${\upsilon}$-MULTIPLICATION DOMAINS IN WHICH EACH t-IDEAL IS DIVISORIAL

  • Hwang, Chul-Ju;Chang, Gyu-Whan
    • 대한수학회보
    • /
    • 제35권2호
    • /
    • pp.259-268
    • /
    • 1998
  • We give several characterizations of a TV-PVMD and we show that the localization R[X;S]$_{N_{\upsilon}}$ of a semigroup ring R[X;S] is a TV-PVMD if and only if R is a TV-PVMD where $N_{\upsilon}\;=\;\{f\;{\in}\;R[X]{\mid}(A_f)_{\upsilon} = R\}$ and S is a torsion free cancellative semigroup with zero.

  • PDF

INTEGRAL DOMAINS WITH FINITELY MANY STAR OPERATIONS OF FINITE TYPE

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제20권2호
    • /
    • pp.185-191
    • /
    • 2012
  • Let D be an integral domain and SF(D) be the set of star operations of finite type on D. We show that if ${\mid}SF(D){\mid}$ < ${\infty}$, then every maximal ideal of D is a $t$-ideal. We give an example of integrally closed quasi-local domains D in which the maximal ideal is divisorial (so a $t$-ideal) but ${\mid}SF(D){\mid}={\infty}$. We also study the integrally closed domains D with ${\mid}SF(D){\mid}{\leq}2$.

SOME ONE-DIMENSIONAL NOETHERIAN DOMAINS AND G-PROJECTIVE MODULES

  • Kui Hu;Hwankoo Kim;Dechuan Zhou
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1453-1461
    • /
    • 2023
  • Let R be a one-dimensional Noetherian domain with quotient field K and T be the integral closure of R in K. In this note we prove that if the conductor ideal (R :K T) is a nonzero prime ideal, then every finitely generated reflexive (and hence finitely generated G-projective) R-module is isomorphic to a direct sum of some ideals.

m-CANONICAL IDEALS IN SEMIGROUPS

  • Kwak, Dong-Je;Kim, Myeong-Og;Park, Young-Soo
    • 대한수학회보
    • /
    • 제37권3호
    • /
    • pp.577-586
    • /
    • 2000
  • For a grading monoid S, we prove that (1) if (S, M) is a valuation semigroup, then M is an m-canonical ideal, that is, an ideal M such that M : (M:J)=J for every ideal J of S. (2) if S is an integrally closed semigroup and S has a principal m-canonical ideal, then S is a valuation semigroup, and (3) if S is a completely integrally closed and S has an m-canonical ideal I, then every ideal of S is I-invertible, that is, J+(I+J)=I for every ideal J of S.

  • PDF

KRULL RING WITH UNIQUE REGULAR MAXIMAL IDEAL

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제15권2호
    • /
    • pp.115-119
    • /
    • 2007
  • Let R be a Krull ring with the unique regular maximal ideal M. We show that R has a regular prime element and reg-$dimR=1{\Leftrightarrow}R$ is a factorial ring and reg-$dim(R)=1{\Rightarrow}M$ is invertible ${\Leftrightarrow}R{\varsubsetneq}[R:M]{\Leftrightarrow}M$ is divisorial ${\Leftrightarrow}$ reg-$htM=1{\Rightarrow}R$ is a rank one discrete valuation ring. We also show that if M is generated by regular elements, then R is a rank one discrete valuation ring ${\Rightarrow}$ R is a factorial ring and reg-dim(R)=1.

  • PDF

A HALF-CENTERED STAR-OPERATION ON AN INTEGRAL DOMAIN

  • Qiao, Lei;Wang, Fanggui
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.35-57
    • /
    • 2017
  • In this paper, we study the natural star-operation defined by the set of associated primes of principal ideals of an integral domain, which is called the g-operation. We are mainly concerned with the ideal-theoretic properties of this star-operation. In particular, we investigate DG-domains (i.e., integral domains in which each ideal is a g-ideal), which form a proper subclass of the DW-domains. In order to provide some original examples, we examine the transfer of the DG-property to pullbacks. As an application of the g-operation, it is shown that w-divisorial Mori domains can be seen as a Gorenstein analogue of Krull domains.