• 제목/요약/키워드: divisor class number

검색결과 6건 처리시간 0.016초

THE p-PART OF DIVISOR CLASS NUMBERS FOR CYCLOTOMIC FUNCTION FIELDS

  • Daisuke Shiomi
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.715-723
    • /
    • 2023
  • In this paper, we construct explicitly an infinite family of primes P with h±P ≡ 0 (mod qdeg P), where h±P are the plus and minus parts of the divisor class number of the P-th cyclotomic function field over 𝔽q(T). By using this result and Dirichlet's theorem, we give a condition of A, M ∈ 𝔽q[T] such that there are infinitely many primes P satisfying with h±P ≡ 0 (mod pe) and P ≡ A (mod M).

ON THE DENOMINATOR OF DEDEKIND SUMS

  • Louboutin, Stephane R.
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.815-827
    • /
    • 2019
  • It is well known that the denominator of the Dedekind sum s(c, d) divides 2 gcd(d, 3)d and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in S(H, d), the sum of the s(c, d)'s over all the c's in a subgroup H of order n > 1 in the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$. First, we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of the same parity as (p-1)/2. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator of S(H, d) for non necessarily prime d's. We show that its denominator is a divisor of some explicit divisor of 2d gcd(d, 3).

IMAGINARY BICYCLIC FUNCTION FIELDS WITH THE REAL CYCLIC SUBFIELD OF CLASS NUMBER ONE

  • Jung, Hwan-Yup
    • 대한수학회보
    • /
    • 제45권2호
    • /
    • pp.375-384
    • /
    • 2008
  • Let $k={\mathbb{F}}_q(T)$ and ${\mathbb{A}}={\mathbb{F}}_q[T]$. Fix a prime divisor ${\ell}$ q-1. In this paper, we consider a ${\ell}$-cyclic real function field $k(\sqrt[{\ell}]P)$ as a subfield of the imaginary bicyclic function field K = $k(\sqrt[{\ell}]P,\;(\sqrt[{\ell}]{-Q})$, which is a composite field of $k(\sqrt[{\ell}]P)$ wit a ${\ell}$-cyclic totally imaginary function field $k(\sqrt[{\ell}]{-Q})$ of class number one. und give various conditions for the class number of $k(\sqrt[{\ell}]{P})$ to be one by using invariants of the relatively cyclic unramified extensions $K/F_i$ over ${\ell}$-cyclic totally imaginary function field $F_i=k(\sqrt[{\ell}]{-P^iQ})$ for $1{\leq}i{\leq}{\ell}-1$.

자바카드 기반 공개키 암호 API를 위한 임의의 정수 클래스 설계 및 구현 (Design and Implementation of Arbitrary Precision Class for Public Key Crypto API based on Java Card)

  • 김성준;이희규;조한진;이재광
    • 정보처리학회논문지C
    • /
    • 제9C권2호
    • /
    • pp.163-172
    • /
    • 2002
  • 자바카드 API는 한정된 메모리를 가진 스마트 카드 기반의 프로그램을 개발할 때 많은 이점을 제공한다. 그러나 공개키 암호 알고리즘 구현에 반드시 필요한 연산들인 모듈러 지수 연산, 최대공약수 계산, 그리고 소수 판정과 생성 등의 연산을 지원하지 않는다. 본 논문에서는 자바 카드에서 공개키 암호 알고리즘 구현을 위해서 반드시 필요한 연산들을 지원하는 임의의 정수 클래스의 설계 및 구현하였다.