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DETERMINATION OF ALL SUBFIELDS OF
CYCLOTOMIC FUNCTION FIELDS WITH GENUS ONE

HwANYUP JUNG* AND JAEHYUN AHN

ABSTRACT. In this paper we determine all subfields with genus one
of cyclotomic function fields over rational function fields explicitly.

1. Introduction

Let k = Fy(T) be the rational function field over the finite field F,
with g clements and A = Fy[T] the ring of polynomials. Let oo be
the prime divisor of k associated to (1/T"). For each monic polynomial
N € A, one uses the Carlitz module to construct the N-th cyclotomic
function field Ky and its maximal real subfield K;{,. For more details
on the theory of cyclotomic function fields we refer to the Rosen’s book
([7, Chap. 12]).

In [6], Kida and Murabayashi have determined all cyclotomic func-
tion fields and their maximal real subfields with divisor class number
one, based on previous work of Madan, Queen, Armitage and Macrae.
Moreover they also have determined which of the above abelian exten-
sions has genus one. In [5], the authors have determined all subfields of
cyclotomic function fields with divisor class number one (when g > 3).

In this paper, we determine all subfields of cyclotomic function fields
with genus one (when q > 3). From now on, by a finite abelian extension
K of k we always assume that it is contained in some cyclotomic function
field. By the conductor of K, we mean the monic polynomial N € A
such that K is the smallest cyclotomic function field containing K. Let
Kt = KN K} be the maximal real subfield of K. We say that K is a
real extension of k if K = K+ and imaginary otherwise. An imaginary
extension K of k is called totally imaginary if K+ = k. The layout of
this paper is as follow. In section two we give some basic tools needed
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in this paper. In section three we determine all real extensions K of k
with genus one (Theorem 3.3 and 3.4). In section four we determine all
imaginary extensions K of k with genus one (Theorem 4.2, 4.4 and 4.6).

The results obtained in this article will be used in a preparatory work
where we determine all finite abelian extensions K of k£ with divisor class
number two.

2. Preliminaries

For any algebraic function field K, denote by gx the genus of K. The
following Lemma is well-known (for example, [8, p.88]).

LeMMA 2.1 (Riemann-Hurwitz formula). Let L/ K be a finite abelian
extension with the same constant field. Then we have

(2.1) 291 — 2 = (2gx - 2)[L : K] + deg(D(L/K)),
where D(L/K) is the different of L/K. Especially g1, > gk.

When L/K is a finite abelian extension, the different D(L/K) of L/K
can be calculated from the following formula (for example, [2, p.24]).

LEMMA 2.2 (Different formula). Let L/ K be a finite abelian extension
with Galois group G. Let p be a prime divisor of K and q be any prime
divisor of L lying above p. Let d(q|p) be the exponent of q in the different
D(L/K). Then we have

e v]
dpln) = 3 (16%(0, L/ K)| = (o, L/K) : C(p, L/K))),
n=0

where G™(p, L/K) denotes the n-th upper ramification group of p in L.

Since Gal(K/k) & (F,[T]/M)*, we need the following result on the
structure of (Fy[T]/M)* (see [3, Section 3]).

LEMMA 2.3. For any monic polynomial M € F,[T], let H(M) be
the group of units in Fo[T}/M. Let M = [[;_, M" be the canonical
decomposition of M as monic irreducible polynomials M; of degree d;.
We define for every i = 1,2,...,s and j with 1 < j < n; — 1 the natural
number x; ; by

gp7ei Tt <y < jiptha.
For every r,i,t,j subjected to0 < r < f—1,1 <14 < s, and for every i :
0<t<d—-1,1<j<n;—1andp1? j, define AZ(-T’t’J)(M) be cyclic

group of order p*i and A(M) be the direct product of all Agr’t’j )(M )
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Fori=1,...,s, define B;(M) be the cyclic group of order ¢"* — 1 and
B(M) be the direct product of B;(M),i = 1,...,s. Then H(M) is
isomorphic to the direct product of A(M) and B(M).

By similar arguments in the proof of [1, Lemma 3.2} and [4, Proposi-
tion 2.3], we have

LEMMA 2.4. Let P be a monic irreducible polynomial in Fy[T]. Let
{ be a natural number such that ¢ divides q —1,£ > 1. Let d = deg P
and dy = gcd(¢,d). Let n, 1 <n < {/dy be such that nd = dy (mod ¢).
Then the unique cyclic subextension K of Kp/k with degree { is given
by K = k({/(—1)% P"). Furthermore, £ divides d ifand only if K C K.

3. Real extension with genus one

Let K be a finite abelian extension of k. We can decompose it as
K = K - K3, where [K : k] is prime to p = char(k) and [K3 : k] is a
p-power.

LEMMA 3.1. Let K be a real extension of k with gic = 1. Let Ky and
K5 be defined as above. If K1 and Ko are proper subfields of K, then

9K, = 9K, = 0.
PRrROOF. Since gx = 1, gk, < 1 for ¢ = 1,2. Assume that gg, =
1. Then Riemann-Hurwitz formula for K/K; implies that K/K; is an

unramified extension. Thus K5/k is also unramified extension, i.e., Ky =
k. Similarly, we show that if gx, = 1, then K; = k. O

PROPOSITION 3.2. Let K be a real extension of k with g = 1. Then
[K : k] is a p-power or prime to p.

PrROOF. Let K7 and Ky be defined as above. If K, Ky & K, by
Lemma 3.1, gk, = gk, = 0. Then K is one of the followings ({5,
Section 4]};

(i) K1 is a subfield of K} with deg P = 2,

(ii) K is a subfield of KIJ%Pz with deg P; = 1(P, # P»),
(iii) Ky = k(v/P P, /P, P3) with deg P, = 1 for all 1 and q odd
and K> is a subfield of Kgg with deg @ = 1.

In case (i) or (ii), as in the proof of {5, Theorem 4.3], gx = (£ —
1)(p* — 1) with £ = [K : k] and p* = [K3 : k]. Thus gx =1 if and only
if £ =2,p* = 2. But then (¢,p) = 2, which contradicts the definition of
K and Ko.
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In case (iii), as in the proof of [5, Theorem 4.3], we have

_J3(*-1) fQ#P, PP,
9K 2(p® — 1) otherwise.

Thus gx # 1, which proves the Proposition. O

First we consider the case that [K : k] is a p-power. Let N =

:_1 P be the irreducible decomposition of the conductor of K. Since
[K : k] is a p-power, m; > 2 for all i. We denote by e;,g; and f; the
ramification index, splitting number, and inertia degree of P;, respec-
tively. Let {;;]1 < j < gz} be the set of primes of K lying above P;.

Then D(K/k) = LBy AB51P)  Prom [8, Proposition I11.8.6], we
know that d(*B;; IP) 2 2(61 — 1) and that the equality holds if and only
if m; = 2.

THEOREM 3.3. Let K be a real extension of k with [K : k] a p-power.
Then g =1 if and only if K is one of the followings;

(1) p =2, K is a quadratic extension of k with conductor P*,deg P =
I,

(2) p=2, K is a quartic extension of k with conductor P3 deg P = 1,

(3) p =2, K is a quadratic extension of k with conductor P? deg P =

2,

(4) p =3, K is a cubic extension of k with conductor P3,deg P = 1,

(5) p = 2, K is a quadratic or biquadratic extension of K with con-
ductor P2P} with deg P, = deg P, = 1.

ProOF. Let n = [K : k]. From the Riemann-Hurwitz formula for
K/k with g = 1, we have

8
(31) 0> -2n+> 2ei—1)figidi=~2n+ ) 2(e; — 1)(n/e;)d;.
=1 i
Note that the equality holds if and only if m; = --- = m; = 2. From
(3.1), we have 3.7 (1 — é)dz < 1. Since e; > 2 and e;|n (= p-power),
we have e; > p. Therefore

(3.2) (1—1—)Zd <;1—a ;<1

Since p > 2, we have Zi:l d; < 2. Thus it suffices to consider the

following cases; (s,d) = (1,1),(1,2) or (s,d1,ds) = (2,1,1). First we

consider the case (s,d) = (1,1). If m; = 2, then 9gt, =0 ([6, Theorems
P

3, 4]) and so gk = 0. Assume that m; > 3. By the Different formula,
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0> —-2n+2(n—1)+(n—a)withalnanda <n. Thusa<n <a+2. If
n=a-+1, then a = (a,n) = 1. Thus n = 2 and so p = 2. Now we have
m1 =4 from (3.1). If n =a+ 2, then a = (a,n) = (a,2). If a = 2, then
n=4p=2andsom; =3. Ifa=1, then n=3,p=3 and so m; = 3.

Next consider the case (s,d) = (1,2). In this case wehavep =2,e = 2
from (3.2). Since P is totally ramified in K/k, we have n = 2. Since the
equality holds in (3.1), we have m; = 2.

Finally consider the case (s,dy,d2) = (2,1,1). In this case we have
p = 2,e1 = ey = 2 from (3.2). In (3.1), the equality holds and so
m1 = mg = 2. By Lemma 2.3, we see that Gal(Kpl;/k) ~ [y x A(P?),
where A(P?) is an elementary 2-group. Thus the character group of
Kp2pg/k can be expressed as

(@, 0): @ = (a0,a1s- -, am), b = (bo,b1,. .-, b))},

where ¢ = 2™, ap,bp € Z/(g — 1)Z,a1,...,am,b1,...,b;m € Z/2Z. Let
Xk be the character group of K. If (@, ?) € Xk, ag = bg = 0 because
e; = ez =2 and (g — 1) is odd. In fact, it is easy to check that (@, ?)
is real if and only if ag = by = 0. Therefore we have

X ={(0,0),(2,0),(0,5),(a, b)}or {(0,0),(T, b))}
Thus K is the compositum of any quadratic subfield of K +2 and any

quadratic subfield of K, p2 OF K is its quadratic subfield with conductor
P1 PZ. 1t completes the proof. O

We consider the case that [K : k| is prime to p. Since ([K : k],p) =1,
the conductor N of K is square-free, say N = [[;_, P;. Let n,d;, e;, gi, fi,
and B;; be as above. Since all P; are tamely ramified, we have D(K/k) =

s g (ei—1)
Hizl j1:1 (’Bijz :

THEOREM 3.4. Let K be a real extension of k, whose degree over k
is prime to p. Then gx =1 if and only if K is one of the followings;

(1) K = k(¥/P) with deg P = 3,¢=1 (mod 3),

(2) K = k(v/P) with deg P = 4, ¢q odd,

(3) K k(v—=Pi/P;) with deg P, = 1,deg P, = 2, ¢ = 1 (mod 4),
(4) K = k(\/—PEPQ) with deg P; = 1,deg P, =2, g =1 (mod 3),

(5) K = k(Y/—PiP1, /—P{R,) or k(Y/PiPP3) withdegP, = 1, ¢ =
1 (mod 3),

(6) K =k(vVP P, 3/—PyP?) withdeg P, =1, ¢ =1 (mod 6),

G}
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(7) K = k(vVPiPs, {/PP}) or k({/P?P,Ps) withdegP, =1, ¢ = 1
(mod 4),
(8) K = k(v/P1P2) with deg Py = 1,deg P» = 3, q odd,
(9) K = k(vPiP2) or k(v/Py,+/P,) with deg P; = 2, q odd,
(10) K = k(v'PiP;,v/P;) or k(VPiP2P3) with degP1 = deg P, =
1,deg P3s = 2, q odd,
(11) K = k(v/P1P2, VP P3, VP Py), k(v PiP2,\/P3 Py) or k(v PL P, P3 Py)
with deg P; = 1, q odd.

ProOF. From the Riemann-Hurwitz formula for K/k, we have
8 S 8
n
0=-2n+ Z;(ei — 1) figidi > —2n + n(z1 di) — E(Zl d;).
1= 1= 1=

Thus 3°7_, d; < 4. Note that ) ;_, d; = 4 if and only if e; = 2 for all 7.
Since ([K : k],p) = 1 it is possible only for odd ¢. If Soiidi <2, we
have gx = 0 ([5, Proposition 4.1]). Thus we must consider the following
cases;

(i) s=1,di=3: N =P,deg P =3,

(ii) § = 2,d1 = 1,d2 =2:N= P1P2,degP1 = l,deng = 2,
(111) 823,d1=d2=d3=1:

N:P1P2P37degP’L:]-aPl7£P] 1f7’5£.77q237

(iv) s=1,di =4: N =P, degP =4,

(V) S = 2,d1 = 1,d2 =3:N= P1P2,degP1 = 1,degP2 = 3,
(Vi) s = 2,d1 = 2,d2 =2:N= P1P2,degPi = 2,P1 75 P2,
(vil) s =3,dy =de =1,d3 = 2:

N = P1P2P3,degP1 = deng = 1,P1 75 Pz,deng = 2,
(Viii) 324,d1=d2=d3=d4:1:
N:P1P2P3P41degR =1y-PZ 7513] 1“#]&24
Note that by the Riemann-Hurwitz formula for K/k, we have
L)
. . 1
(3.3) gk = 1if and only if ;(1 ei)d, 2.

Case (i) N = P with deg P = 3: By (3.3), we have e; = 3 and so
n = 3. Note that n(= 3) divides [K} : k] = (¢ — 1)/(g — 1) = ¢ +¢+1.
Thus ¢ = 1 (mod 3). Since K;/k’ is cyclic and deg P = 3, we have
K = k(¥/P) by Lemma 2.4.

Case (iv) N = P(deg P = 4): By (3.3), e1 = 2 and so n = 2. Since 2
divides ¢* — 1, ¢ must be odd. Since Kp/k is cyclic, K is unique. Since
2 divides ¢ — 1 and 2 divides d(= 4), we have K = k(VP) by Lemma
2.4.
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Case (ii) N = P Py(deg P, = 1,deg P, = 2): Note that Gal(Kp, /k)
is cyclic of order ¢ — 1, say (01). Gal(Kp,/k) is cyclic of order ¢® — 1,
say (02). Without loss of generality, we assume that the generator o

of Gal(KPle/K;glpg) is mapped to (01,0_2—(q+1)) under the canonical

isomorphism Gal(Kp, p,/k) ~ Gal(Kp, /k) x Gal(Kp,/k). For any finite
abelian extension K we denote by X the group of Dirichlet characters
of K. Let y; € X Ko, be the character associated to o;, that is, x1(o1) =

(-1 = e2m/(a=1) yo(gy) = (g = e27i/(¢’=1)  Then, for 0 < a <
q—ZaOSb§q2_2v

(3.4) x4xb € XKp,p, sTealif and only if a =b (mod ¢ —1).

Thus if X?Xg € X, then a is uniquely determined by b. By (3.3), we
have 1 = gl; + % Thus (e1,e2) = (2,4) or (3,3). First assume that
(e1,e2) = (2,4). T xixd € Xk, a = 0,(q— 1)/2 and b = 0,(¢? — 1)/4,
(¢> = 1)/2, 3(¢*> — 1)/4. Note that it is only possible for odd q. Since
(e1,e2) = (2,4), there are only two possibilities for {(a,b)|x$x} € Xk},
i, {(a,b)la =0, (g~ 1)/2 and b =0, (¢ — 1)/4, (? — 1)/2,3(¢> — 1)/4}
and {(0,0), (¢g—1)/2, (¢ —1)/4), (0, (¢* —1)/2), ((¢—1)/2,3(¢* - 1)/4)}.
By (3.4), the first case is impossible and in the second case we must
have (¢> — 1)/4 = (g — 1)/2 (mod ¢ — 1). Tt is easy to check that
(¢>—1)/4 = (g—1)/2 (mod g—1) ifand only if g = 1 (mod 4). Note that
quartic subfield of K ?;] p, is unique because K ;1 Py /k is cyclic. By Lemma,
2.4, we see that k(/P,) corresponds to {(0,b)|b = 0, (¢®> — 1)/4, (¢® —
1)/2,3(q®> — 1)/4}. Thus we have K = k(v/=P;v/P;). When (e;,e2) =
(3,3), similarly we have K = k({/—P?Pj) with ¢ = 1 (mod 3). The
other cases can be treated by similar method, so we leave it to the
readers. O

4. Imaginary extensions with genus one

In this section, we determine all imaginary abelian extensions K of k
with g = 1.

LEMMA 4.1. Let K be an imaginary extension of k with gx = 1.
Then gy + = 0.

PROOF. Since g > 9+, g+ = 0 or 1. Assume that g+ = 1. Then
from the Riemann-Hurwitz formula for K/K*, deg(D(K/K*)) = 0 and
so K/K7 is unramified. But each infinite primes of K+ are totally
ramified in K. Thus g+ = 0. U
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First we consider the case that K/k is a totally imaginary extension,
ie., KT =k. The degree [K : k] of K/k is a divisor of ¢ — 1 and so the
conductor IV of K is a square-free.

THEOREM 4.2. Let K be a totally imaginary extension of k. Then
gx = 1 if and only if K is one of the followings;

(1) K = k(\/——PQ) withdeg P =2, ¢=1 (mod 3),

(2) K = k(/P1P2) withdeg P, =degP> =1,g=1 (mod 3),

(3) K= k(\/~P1 v—P2) withdeg Py =deg P, =1, ¢=1 (mod 4),
(4) K = k(V/~P1y/—P,) withdeg P, =deg P, =1, ¢ =1 (mod 6),
(5) K = k(v/—P) with deg P = 3, ¢ odd,

(6) K =k(v/—P1P;) withdeg P, =1,deg P> = 2, q odd,

(1) K = k(vV/~P P2P;) withdeg P, =1, q > 3 odd.

PRrOOF. Let N =[];_; P; be the conductor of K. We denote by e;, g;
and f; the ramification index, splitting number, and inertia degree of P;,
respectively. Let {Pi;]1 < j < g¢;} be the set of primes of K lying above
P;. Then D(K/k) = oo™V x [T TI%, B ™. Let n = [K : k|-
From the Riemann-Hurwitz formula for K / k, we have

1

(4.1) gK_1<=>;(1 - Ji =1+~
Since e; > 2, we have 1 < 1 +% < S qdi < 2+% < 3. Note that
i ,di = 3if and only if n = 2 and it is possible only for odd ¢. It
suffices to consider the following cases;

(i) s=1,di =2: N=P(deg P = 2),

( ) s = 2,d1 = d2 =1:N= P1P2(degP1 = deng = 1,P1 7& P2),
(iii) s=1,d1 =3 : N = P(deg P = 3),

(IV) 8—2 dl—l d2—2 N = P1P2 (degPlzl,degPQZQ),
(V) s = 3 d1 d2 = d3 =1:N= P1P2P3
(deg P =1, P, # P, if i # j)(g > 3).
Case (i) N = P(deg P = 2) : Since K/k is totally ramified, we have

e1 = n. From (4.1), we have n = 3. Note that ¢ must satisfy ¢ = 1
(mod 3). Since Kp/k is cyclic, we have the unique cubic subfield of Kp
over k. From Lemma 2.4, we have K = k(v/—P2).

Case (ii) N = PiPx(degPy = degP> = 1,P; # P,) : From (4.1),

we have
1 1 1
l=—=+4—+—.
n €1 €9
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We may assume that e; < es. From the fact that e; divides n, we have
(e1,e2,m) = (3,3,3),(2,3,6) or (2,4,4). Note that XKP1P2 = Xkp, X
Xkp, and let x; be a generator of Xk, . For 0 < a,b < g — 2, let
X‘fxg € Xk. By changing x; by x; 1if it is necessary, we may assume
that x%x3 is real if and only if a + b = 0 (mod ¢ — 1). First consider
the case (e1,e2,n) = (3,3,3). Then we have ¢ = 1 (mod 3) and a,b €
{0,(¢ — 1)/3,2(q — 1)/3}. Since n = 3 and K/k is totally ramified, we
have

{(a,0)} = {(0,0), ((¢ — 1)/3,(g = 1)/3), (2(¢ - 1)/3,2(¢ — 1)/3)}

and so K = k(Y P, P2) C k(/—P,,/—F;). Similarly, we have K =
k(v —Piv/—PF2), g=1 (mod 4) for (e1,e,n) = (2,4,4) and

K=k(yV/-P,V-P), ¢q=1 (mod 6) for (e1,ez,n) = (2,3,6).

Case (iii) N = P(deg P = 3), q odd : Since ¢; = n = 2, it suffices to
find the (unique) quadratic subfield of Kp for K. From Lemma 2.4, we

have K = k(v/—-P).

Case (iv) N = P Py(degP; = 1,degP>» = 2), ¢ odd : We must
find a quadratic subfield K of Kp p, with e; = e2 = 2. Note that
XKp,p, = XKp, X XKp,. Define (x;) = Xgp. For 0 <a < ¢—2and
0<b<q?-2 let x3x3 € Xk. As Case (ii), we have a = 0, (¢ — 1)/2
and b = 0,(q%> — 1)/2. Since n = 2, we have {(a,b)} = {(0,0), (¢ —

2
1)/2,(¢*> — 1)/2)}. Since ¢ is odd, xgq “D/2 i5 real. Thus such K is
a required one. Note that k(v/—P1) corresponds to {l,xgq*l)ﬂ} and
32
k(+/Ps) corresponds to {1, X(Qq 1)/2}. Thus we have K = k(v/—P; Ps).

Case (v) N = PiPyP3(deg P, = 1,P; # P;jifi # j), ¢ > 3 odd :
We must find a quadratic subfield K of Ky with e; = es = e3 = 2.
Let Xk, = (x1) X {x2) X (x3). Since e; = ez =e3 =n =2, Xg =
(x {02\ (=172, (4=1/2) * gince k(v/=F;) is the subfield of Kp, associ-
ated to (ngﬂl)ﬂ), we have K = k(y/—P P P3). O

From now on, we assume that K is not totally imaginary, i.e., Kt # k.
Let S(K) be the set of prime divisors of the conductor of K.

PROPOSITION 4.3. Let K/k be an imaginary abelian extension with
gx = 1. Assume that K is not totally imaginary. Then we have
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|S(K)| = [S(KT)|, or |S(K)| = |S(KT)| + 1. Moreover, if |S(K)| =
|S(K)| + 1, then we have

(i) [K:K*]=[K":k]=2and Gal(K/k) 2 Z/27. & Z/2Z,

(i) K = F - K™, where F/k is totally imaginary abelian extension
with [F : k] = 2 and P € S(K) — S(K™) is totally ramified in
F/k, deg P =1, q is odd.

When |S(K)| = |S(K™)|, K and Kt have the same conductor.

PROOF. Assume that S(K*) C S(K). Choose P € S(K) — S(K™).
Let d = degP, £ = [K : K¥] and r = [K™ : k]. The infinite part of
different D(K/K™) of K/K* is [[I_; oo(é V. We write ey, f1, g1 (resp.
€2, f2, g2) for the ramification index, mertla degree, sphttlng number of P
in K*/k (resp. K/K*). The P-part of D(K/K™*)is [{L, [T52, 62 b,
Thus we have

deg (D(K/K™)) 2 deg( Hooe VL TTTRE )
i=1j=1

= (K—l)r+€’rd(1——£—) 2(6—1)7“4—@.
2

Note that if deg(D(K/K™*)) = (£—1)r +£rd/2, then primes lying above
P are the only ramified finite primes between K/K* and ez = 2. By
the Riemann-Hurwitz formula for K/K™, we have

0 = —20+deg(D(K/K™))
> 24 (0 1)r+€';—d > 204+ (=1 +2.

Thus r < zf—l = 1+ﬁ <2,s0r=2,f{=2andd=1. If another prime
is contained in S(K)— S(K™), deg(D(K/K*)) must strictly larger than
(¢ —1)r+4rd/2, which is a contradiction. Therefore we have shown that
if S(K) # S(K™), then S(K) =S(KT)U{P} with degP =1 and [K :
Kt =[K™ :k]| =2. Thus [K : k] = 4 and Gal(K/k) = Z/2Z®Z/2Z, or
Z/4Z. We claim that Gal(K/k) = Z/2Z & Z/2Z. If Gal(K/k) = Z/4Z,
then K is the unique nontrivial subfield of K. Let Q € S(K™). Then
e(Q,K*/k) = 2 and e(Q,K/k) = 2 or 4. Since e(Q,K/K*) = 1, we
have e(Q, K/k) = 2. Let Ky be the inertia field of @ in K. Then
[K : Ko] = e(Q, K/k) = 2 and so Ky = K. But Q is totally ramified in
K /Ky but unramified in K/K*, which is a contradiction. This proves
the claim. Note that e(oco, K/k) = e(oco, K/KT) = 2. Let F/k be a
quadratic subfield of K with F' # K. Clearly, F/k is totally imaginary
quadratic extension. For P € S(K) ~ S(K), since e(P, K/k) = 2 and
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e(P,K*/k) = 1, we have e(P, F/k) = 2, i.e., P is totally ramified in
Now suppose that |S(K)| = |S(KT)|. Let N =[[;_; P/ and N* =

[I;.; P be the conductors of K and K™, respectively. Then we have

s m; s
[Kn : Ky+] = ——_‘izl @(lel) = Hq(mi‘m;)di,

= ®(F) =
where d; = deg P;. Thus [Kn : Ky+] is a g-power and so [KKy+ :
Ky+] = [K : KN Ky+| is also a g-power. But [K : KN Ky+] is a
divisor of ¢ — 1 because |[K : K N Ky+] divides [K : KT]. Therefore
K : KNKy+] =1, ie., K C Ky+. It shows that N = N*, which
completes the proof. U

First we consider the case that |S(K)| = |S(KT)|.

THEOREM 4.4. Let K/k be an imaginary abelian extension such that
Kt %4k and |S(K)| = |S(Kt)|. Then gix =1 if and only if K is one of
the followings;

(1) K = k(\/ﬁ) with deg P =2, ¢ =1 (mod 4),

(2) K=k(Y/—P1,V/—P,) withdeg P, =1, ¢g=1 (mod 3),

(3) K =k(v/- P : \/P1P3 with deg P, =1, ¢ =1 (mod 4),

(4) K = k(/-P1/—P,) withdeg P, =1, g=1 (mod 6),

(5) K =k(v—P1,vV/—P) withdeg P, =1, ¢ =1 (mod 4),

(6) K =k(vV—Piv—DP,) W1th deg P, =1,¢g=1 (mod 6),

(7) K = k(Y/—P,a) with degP =1, Where q is 4-power and « is an

element of K;_;Q such that k() is any quadratic subfield of KPQ,
(8) K = k(v/—P,pB) with deg P = 1, where q is 3-power and (3 is an
element of K;;z such that k(B) is any cubic subfield of K;,

(9) K =k(v/=Pi,v/=Ps,/—P;) withdeg P, = 1, ¢ > 3 odd.
PrOOF. By Lemma 4.1, we have gx+ = 0. Thus K7 is one of the
followings ([5]);
(i) KT is a subfield of K}, deg P = 2,
(ii) KT is a subfield of Kf;lpz,degPi =1,
(iii) KT is a subfield of K;Q,degP =1.
(iv) K* = k(V/PiP2,/P1P3), odd q, deg P; = 1.
We write £ = [K : K*) and r = [K™T : k).

Case (i) K* is a subfield of K}, degP = 2 : In this case K is a
subfield of K'p. From the Riemann-Hurwitz formula for K/K*, we have
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gk = 1lifand only if 0 = ~2¢ 4 (£ — 1)r + (£ — 1)2. Since 7 > 2, we
have r = ¢ = 2. Since ¢ is a divisor of ¢ — 1, it is possible only for
odd g. Since Kp is cyclic, K is the unique quartic subfield of Kp. Let
Gal(Kp/k) = (o). Then Gal(Kp/K}) = (09t1). We have Xg, = (x),
where x is the character associated to 0. Then Xg = (X(‘12_1)/ 4H, 1f
4)(¢ + 1) = [KF : k], K is real, which is a contradiction. Suppose
g = 1 (mod 4). Then K is imaginary and KT is quadratic subfield
of K. Therefore the (unique) quartic subfield of Kp with deg P = 2,
g =1 (mod 4) is the required one. By Lemma 2.4, we have K = k(v/P).

Case (ii) K is a subfield of Kj, , ,deg P = 1 : From the Riemann-
Hurwitz formula for K/k, we have g = 1 if and only if 1 = % + é + ;}2—
Thus gk = 1 if and only if (£, e1,€2) = (3,3,3), (2,4,4), (2,3, 6), (4,2,4),
(3,2,6), or (6,2,3). Note that e(P;,, Kp,p,/k) = e(P;, Kp,/k) = q — 1.
Since e(P;, Kp p, /Kl‘.f1 p,) = 1, as the number field case (for example,
[9, Proposition 2.15]), we have e(Pi,K;I&/k) =gqg—1, ie., P; is to-
tally ramified in Kj;l P /k. Thus we have rle; for i = 1,2. Write
Gal(Kp,p,/k) =2 (01) x (02) and let x; be the character associated
to 0;. For 0 < a,b < q — 2, consider x%x} € XKp,p,- Note that
éx5 € Xkp p, is real if and only if a +b = 0 (mod g — 1). Here
we assume that the generator of the sign group is mapped to (o1, 09).
Assume that (¢,e1,e2) = (3,3,3). In this case, ¢ must satisfy ¢ = 1
(mod 3). Since 7|3, we have r = 3. If xx} € Xkp p, € Xk, we have
a,b € {0,(g—1)/3,2(q — 1)/3}. Since [K : k] = r = 9, we have Xg =
{x8x8la,b=0,(q—1)/3,2(q — 1)/3}. It is easy to check that this case
satisfies £ = r = 3 and by Lemma 2.4, we have K = k(¥/~P1, V- B).
Similarly, we have K = k(v/—P1, v/PiPs) with ¢ = 1 (mod 4) (resp.
k($/—P?P5) with ¢ = 1 (mod 6), k(+/—P;, /—P) with ¢ = 1 (mod 4),
k(3/P3P) with ¢ =1 (mod 6)) for (£, e1,e2) = (2,4,4) (resp. (2, 3, 6),
4, 2, 4), (3, 2, 6)). Assume (£,e;,e2) = (6,2,3). In this case r|2 and
7|3, that is, 7 = 1, which contradicts the fact that » > 2.

Case (iii) K+ is a subfield of K},,degP = 1 : Note that [Kp2 :
k] = q(q — 1),[K;2 : k] = q. By the Riemann-Hurwitz formula for
K/K*, we have gk = 1if and only if 0 = —2¢+ (¢~ 1)r + (£ — 1) if and
only if (r,£) = (2,3) or (3,2).

Assume (r,¢) = (2,3). Since r = 2, g is 2-power. Since [ =
g = 1 (mod 3). Thus ¢ is 4-power. By Lemma 2.3, Gal(Kp2/k)

IR &2
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Gal(Kp/k) x Gal(K;;z/k) >~ A x B, where A is the cyclic group of order
g — 1 and B is an elementary abelian 2-group of order g. Thus a cubic
subfield of Kp2/k corresponds to a subgroup C of A x B with group
index [A x B : C] = 3. Since (¢,q — 1) = 1, it is easily checked that
B C C. Thus a cubic subfield of Kp2 is in fact a subfield of Kp and by
Lemma 2.4, it becomes k(</—P). Let F be the unique cubic subfield of
K/k. Then F = k(/—P). Therefore K is the compositum of k({/—P)
and any quadratic subfield of KI";Q. Thus K = k(¥/=P, a), where a is
an element of K7, such that k(a) is any quadratic subfield of K ;,Lz.
Assume (r,£) = (3,2). Then g is a 3-power. As above, we conclude
that the quadratic subfield of K is k(v/—P) and K is the compositum
of k(v/—P) and any cubic subfield of K;;z. Therefore K = k(v/—P, (),
where (§ is an element of K;fz such that k() is a cubic subfield of K ;2.

Case (iv) K+ = k(v/P P, V/P1P;), odd q, deg P, = 1 : In this case
we have 7 = 4. From the Riemann-Hurwitz formula for K/k, we have
gx =1 if and only if

1 1 1 1

2= 44—+ —

1 €1 €9 €3
Since ¢, e1,€e2,e3 > 2, we have l = e} = e3 = e3 =2 and so [K : k] = 8.
Let Xxg = (x1) x {x2) x {x3). For x¢x4x§ € Xk, we have a,b,c €
{0,(¢g — 1)/2}. Since [K : k] = 8, we have {(a,b,c)} = {(a,b,c)|a,b,c =
0,(¢ — 1)/2}. Therefore K is the compositum of quadratic subfield of
Kp, fori=1,2,3, that is, K = k(\/—Pl, V—Ps, \/—Pg). O

Next we consider the case |S(K)| = |S(KT)|+1. Let K/k be an imag-
inary abelian extension with K+ # k, gx = 1 and |S(K)| = |S(KT)|+1,
say S(K) = S(K1)U{P}. Let F be a subfield of K, as in Proposition
4.3. Then F is totally imaginary quadratic subfield and deg P = 1,
P € S(F). By Proposition 4.3, we see that ¢ is odd.

LEMMA 4.5. If gp = 0, then S(F) = {P}. If gr = 1, then S(F) =
{P,Q} withdegQ =2 or S(F) = {P,Q1,Q2} with deg Q; = 1.

ProOOF. By the Riemann-Hurwitz formula for F/k, we have gp =
0 <> deg(D(F/k)) = 2and gr = 1 < deg(D(F/k)) = 4. But deg(D(F/k))
> deg(ocoP) = 2. Here P is the prime above P. Thus gr = 0 &
D(F/k) = oc - P < S(F) = {P}. Suppose gr = 1. We must have
IS(F)| < 3. If S(F) = {P,Q}, deg(D(F/k)) = deg(coBQ) = 4. Here
1 is the prime above Q. Thus deg@ = 2. If S(F) = {P,Q1,Q2},
deg(D(F/k)) = 2+degQ1+deg Q2 =4andsodegQ; =deg@Q2 = 1. O
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THEOREM 4.6. Let K/k be an imaginary abelian extension such that
K* # k and |S(K)| = |S(KT)|+ 1. Then gk = 1 if and only if
K = k(v/=P,\/Q), degP = 1,degQ = 2 or K = k(v/—P,/PP,),
degP =deg P, =degP, =1,(P # P;).

PROOF. Since gg+ = 0 and [K™T : k] = 2, from [5, Section 4] and
Lemma 2.4, K+ is one of the followings;

(i) Kt = k(/Q) with S(KT) = {Q} and degQ = 2,
(ii) K+ = k(\/Plpz) with S(K+) = {Pl,Pz} and degPi = 1,
(ili) Kt = k(v/Q) with S(K*) = {Q} and deg@Q = 2 or K+ =
k(\/Plpg) with S(K+) = {Pl,Pz} and deg Pi =1.

Now consider F/k. F is totally imaginary quadratic extension of k.
If gr = 0, then S(F) = {P},degP = 1 and so by [5, Theorem 3.6],
F = k(v/=P). If gr = 1, then S(F) = {P,Q} with degQ = 2 or
S(F) = {P,Q1,Q2} with deg@; = 1. By Theorem 4.2, F = k(v/—P)
with deg P = 3, F = k(v/—PP,) with degP, = 1l,degP» = 2, or
F = k(v/—P1P,P3) with deg P, = 1. Since |S(F')| = 2 or 3, the first case
is impossible. Thus F is one of the followings;

(a) F =k(v/=P),degP =1,
(b) F=k(v—P1P),deg P, = 1,deg P, = 2,
(C) F= k(\/ —P1P2P3),degPi =1.
For each cases of K+ and F, we check whether K satisfies gx = 1.

Case (i)-(a) : F = k(v/=P) with degP = 1 and K+ = k(/Q) with
deg@ = 2. Let L = k(v/—PQ). Then P and @ ramify in L. Thus
K/L is an unramified extension. By the Riemann-Hurwitz formula for
K/L, we have gx = 2g1, — 1. By the Riemann-Hurwitz formula for L/k,
gr =1 and so g = 1.

Case (i)-(b) : F = k(v/—PQ) and K+ = k(,/Q) with deg P = 1 and
deg Q = 2. Since K = k(v/=PQ,/Q) = k(v/—P,/Q), this case equals
to the Case (i)—(a).

Case (i)—(c) : Since |S(K)| > |S(F)| = 3 and |S(K™)| = 1, it is
impossible.

Case (ii)—(a) : F = k(v=P) and Kt = k(P P) with deg P =
degP) = degP, = 1 and P # P, P,. Let L = k(v/—PP,P,). Note
that we have the ramification indices e(P, K/k) = e(P,L/k) = 2 and
e(P;,, K/k) = e(P;,L/k) = 2. Thus K/L is an unramified extension, and
so deg D(K /L) = 0. By the Riemann-Hurwitz formula for L/k, we have
gz = 1. By the Riemann-Hurwitz formula for K/L, we have gx = 1
because deg D(K/L) = 0.
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Case (ii) (b) : F =k(v/—PP;) and K+ = k(y/P1 P;) with deg P = 2
and deg P; = 1. Since g = 1, we have that gk = 1 if and only if K/F is
unramified. But Pp is ramified in K/F because we have the ramification
indices e(Pa, K/k) = 2 and e(P2, L/k) = 1. Thus gx # 1.

Case (ii) (¢) : F = k(=P P,P3) and K™ = k(y/P1 P) with deg P, =
1. Since K = k(vV—P1PyP;,/P1P;) = k(v/—~P3,\/P, P;), it returns to
the Case (ii) (a). O

References

(1] B. Angles, On Hilbert class field towers of global function fields, in “Drinfeld
modules, modular schemes and applications”, 261-271, World Sci. Publishing,
River Edge, NJ, 1997.

[2] R. Auer, Ray class fields of global function fields with many rational places, Dis-
sertation at the University of Oldenburg, 1999.

(3] H. L. Claasen, The group of units in GF(q)[z]/(a(zx)), Nederl. Akad. Wetensch.
Proc. Ser. A 80=Indag. Math. 39 (1977), no. 4, 245-255.

[4] R. Clement, The genus field of an algebraic function field, J. Number Theory 40
(1992), no. 3, 359 375.

[5] H. Jung, and J. Ahn, Divisor class number one problem for abelian exrtensions
over rational function fields, to appear in J. of Algebra.

[6] M. Kida, and N. Murabayashi, Cyclotomic functions fields and divisor class num-
ber one, Tokyo J. Math. 14 (1991), no. 1, 45-56.

[7] M. Rosen, Number theory in function fields, Graduate Texts in Mathematics,
Springer-Verlag, New York, 210 (2002).

[8] H. Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag,
1993.

[9] L. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics,
Springer-Verlag, New York, 83 (1997).

Hwanyup Jung

Department of Mathematics Education
Chungbuk National University
Cheongju 361-763, Korea

E-mail: hyjung@chungbuk.ac.kr

Jachyun Ahn

Department of Mathematics
Chungnam National University
Dagjon 305-764, Korea

E-mail: jhahn@cnu.ac.kr



