THE p-PART OF DIVISOR CLASS NUMBERS FOR CYCLOTOMIC FUNCTION FIELDS

Daisuke Shiomi

Abstract

In this paper, we construct explicitly an infinite family of primes P with $h_{P}^{ \pm} \equiv 0\left(\bmod q^{\operatorname{deg} P}\right)$, where $h_{P}^{ \pm}$are the plus and minus parts of the divisor class number of the P-th cyclotomic function field over $\mathbb{F}_{q}(T)$. By using this result and Dirichlet's theorem, we give a condition of $A, M \in \mathbb{F}_{q}[T]$ such that there are infinitely many primes P satisfying with $h_{P}^{ \pm} \equiv 0\left(\bmod p^{e}\right)$ and $P \equiv A(\bmod M)$.

1. Introduction

Let p be prime. Let \mathbb{F}_{q} be a finite field with $q=p^{r}$ elements. Let $k=\mathbb{F}_{q}(T)$ be the rational function field over \mathbb{F}_{q}, and let $\mathbb{A}=\mathbb{F}_{q}[T]$ be the associated polynomial ring. We denote by \mathbb{P} the set of all monic irreducible polynomials in \mathbb{A}. For a monic polynomial $N \in \mathbb{A}$, let K_{N}, K_{N}^{+}be the N-th cyclotomic function field, and its maximal real subfield, respectively. Let h_{N} (resp. h_{N}^{+}) be the divisor class number of $K_{N}\left(\right.$ resp. $\left.K_{N}^{+}\right)$, and $h_{N}^{-}=h_{N} / h_{N}^{+}$.

For a positive integer n, we consider the infinity of the set of primes

$$
H^{ \pm}(n)=\left\{P \in \mathbb{P} \mid h_{P}^{ \pm} \equiv 0(\bmod n)\right\}
$$

Goss [3] found Kummer's criterion for function fields, and proved that \# $H^{-}(p)$ $=\infty$ when $q=p \geq 3$. Feng [1] extended Goss's results and showed that \# $H^{ \pm}(p)=\infty$ for a general q. Yaouanc [11] used elliptic curves over finite fields to prove that ${ }^{\#} H^{-}(q)=\infty$. He also showed that there exist infinitely many primes $P \in \mathbb{P}$ such that $h\left(\mathcal{O}_{P}^{+}\right) \equiv 0(\bmod q)$, where $h\left(\mathcal{O}_{P}^{+}\right)$is the ideal class number for K_{P}^{+}. This result implies ${ }^{\#} H^{+}(q)=\infty$ because $h_{P}^{+} \equiv 0$ $\left(\bmod h\left(\mathcal{O}_{P}^{+}\right)\right)$. More recently, Lee and Lee [6] gave a lower bound on the p rank of the divisor class group for K_{P}^{+}, and proved that ${ }^{\#} H^{+}\left(p^{p(p-1)}\right)=\infty$ when $q=p$.

[^0]Our first goal of this paper is to construct explicitly an infinite family of primes $P \in \mathbb{P}$ with

$$
\begin{equation*}
h_{P}^{ \pm} \equiv 0 \quad\left(\bmod q^{\operatorname{deg} P}\right) \tag{1}
\end{equation*}
$$

(see Theorem 3.3 and Corollary 3.5). As a corollary of this result, we have

$$
\begin{cases}\# H^{ \pm}\left(p^{e}\right)=\infty & \text { if } q \neq 2 \tag{2}\\ { }^{\#} H^{+}\left(p^{e}\right)=\infty & \text { if } q=2\end{cases}
$$

for any positive integer e.
Secondly, we prove a much stronger form of (2). For $A, M \in \mathbb{A}$ and a positive integer n, we define

$$
H^{ \pm}(A, M, n)=\left\{P \in \mathbb{P} \mid P \equiv A(\bmod M), h_{P}^{ \pm} \equiv 0(\bmod n)\right\}
$$

Then we have:
Theorem 1.1. Let $A, M \in \mathbb{A}$ with

$$
\operatorname{deg} M \geq 1, \quad \operatorname{gcd}\left(M, T^{p}-T\right)=\operatorname{gcd}(M, A)=1
$$

We further assume that there exits a polynomial $B \in \mathbb{A}$ such that $A \equiv B\left(T^{p}-T\right)$ $(\bmod M)$. Then, for any positive integer e, we have

$$
\begin{cases}\# H^{ \pm}\left(A, M, p^{e}\right)=\infty & \text { if } q \neq 2, \tag{3}\\ \#^{+}\left(A, M, p^{e}\right)=\infty & \text { if } q=2 .\end{cases}
$$

This paper is organized as follows. In Section 2, based on the idea of Lee-Lee [6], we give lower bounds on the p-parts of divisor class numbers for cyclotomic function fields. In Section 3, we use these lower bounds to construct an infinite family of primes $P \in \mathbb{P}$ satisfying with (1). By using this result and Dirichlet's theorem, we prove Theorem 1.1.

2. Lower bounds of divisor class numbers

For a positive integer n, the nth Goss-Bernoulli number is defined by

$$
B_{n}(T)= \begin{cases}\sum_{i=0}^{\infty} s_{i}(n) & \text { if } n \not \equiv 0 \quad \bmod q-1 \\ \sum_{i=0}^{\infty}-i s_{i}(n) & \text { if } n \equiv 0 \quad \bmod q-1\end{cases}
$$

Here,

$$
s_{i}(n)=\sum_{A \in \mathbb{A}(i)} A^{n}
$$

where $\mathbb{A}(i)$ is the set of all monic polynomials in \mathbb{A} of degree i. We put

$$
l(n)=a_{0}+a_{1}+\cdots+a_{d-1},
$$

where $a_{0}+a_{1} q+\cdots+a_{d-1} q^{d-1}$ is the q-adic expansion of n.
Lemma 2.1 (cf. [2] Proposition 2.11). If $i>l(n) /(q-1)$, then $s_{i}(n)=0$. In particular, $B_{n}(T)$ is a polynomial in \mathbb{A}.

Lemma 2.2 (cf. [2] Lemma 6.1). If $n \equiv 0(\bmod q-1)$, then we have

$$
\sum_{i=0}^{\infty} s_{i}(n)=0
$$

Lemma 2.3.

(1) If $n=(q-1)+q^{e}(e=1,2, \ldots)$, then $B_{n}(T)=1-\left(T^{q^{e}}-T\right)$.
(2) If $n=(q-1)+(q-1) q^{e}(e=1,2, \ldots)$, then $B_{n}(T)=1-\left(T^{q^{e}}-T\right)^{q-1}$.

Proof. By Lemmas 2.1 and 2.2, we have

$$
B_{n}(T)= \begin{cases}1+s_{1}(n) & \text { if } q>2 \text { and } n=(q-1)+q^{e} \\ -s_{1}(n)-2 s_{2}(n)=2+s_{1}(n) & \text { if } n=(q-1)+(q-1) q^{e}\end{cases}
$$

By Theorems 4.1 and 4.2 in [5], we have

$$
s_{1}(n)= \begin{cases}-\left(T^{q^{e}}-T\right) & \text { if } q>2 \text { and } n=(q-1)+q^{e} \\ -1-\left(T^{q^{e}}-T\right)^{q-1} & \text { if } n=(q-1)+(q-1) q^{e}\end{cases}
$$

Therefore, the result follows.
Let $P \in \mathbb{P}$ be a prime of degree d. We denote by C_{P} (resp. C_{P}^{+}) the p-primary part of the divisor class group of degree 0 for K_{P} (resp. K_{P}^{+}). Let

$$
\varphi: C_{P}^{+} \rightarrow C_{P} \quad\left([D] \mapsto\left[i_{K_{P} / K_{P}^{+}}(D)\right]\right)
$$

be the conorm map, and put $C_{P}^{-}(p)=$ coker φ (cf. Chapter 3 in [9]).
Lemma 2.4. The map φ is injective. In particular, the order of $C_{P}^{-}(p)$ is equal to the p-part of h_{P}^{-}.
Proof. Suppose that $[D] \in \operatorname{ker} \varphi$. Then we have $i_{K_{P} / K_{P}^{+}}(D)=(\alpha)_{K_{P}}$ for some $\alpha \in\left(K_{P}\right)^{\times}$. Fix a generator σ of the Galois group for K_{P} / K_{P}^{+}. Then we see that $\left(\alpha^{\sigma}\right)_{K_{P}}=(\alpha)_{K_{P}}$. Hence $\alpha^{\sigma-1} \in \mathbb{F}_{q}^{\times}$, and so $\alpha^{q-1} \in\left(K_{P}^{+}\right)^{\times}$. We thus get $[D]=[0]$ because $\operatorname{gcd}(q-1, p)=1$.

Let W be the ring of Witt vectors of $\mathbb{A} / P \mathbb{A}$, and \mathfrak{m} be its maximal ideal. Let $\omega:(\mathbb{A} / P \mathbb{A})^{\times} \rightarrow W$ be the Teichmüller character such that $\omega(x) \equiv x$ $(\bmod \mathfrak{m})$ for any $x \in(\mathbb{A} / P \mathbb{A})^{\times}$. Then we have the decomposition into isotypical components according to characters of $(\mathbb{A} / P \mathbb{A})^{\times}$:

$$
C_{P} \otimes_{\mathbb{Z}_{p}} W=\bigoplus_{n=1}^{q^{d}-2} C_{P}\left(\omega^{n}\right)
$$

(Similarly for $C_{P}^{ \pm}$). It is easy to check that

$$
C_{P}^{+}\left(\omega^{n}\right) \simeq C_{P}\left(\omega^{n}\right) \text { and } C_{P}^{-}\left(\omega^{n}\right)=\{0\} \text { if } n \equiv 0(\bmod q-1),
$$

and

$$
C_{P}^{+}\left(\omega^{n}\right)=\{0\} \text { and } C_{P}^{-}\left(\omega^{n}\right) \simeq C_{P}\left(\omega^{n}\right) \text { if } n \not \equiv 0(\bmod q-1)
$$

Hence we obtain

$$
\begin{align*}
& C_{P}^{+} \otimes_{\mathbb{Z}_{p}} W \simeq \bigoplus_{\substack{n=1 \\
q-1 \mid n}}^{q^{d}-2} C_{P}\left(\omega^{n}\right), \tag{4}\\
& C_{P}^{-} \otimes_{\mathbb{Z}_{p}} W \simeq \bigoplus_{\substack{n=1 \\
q-1 \neq n}}^{q^{d}-2} C_{P}\left(\omega^{n}\right) . \tag{5}
\end{align*}
$$

Goss and Sinnott [4] proved that

$$
\begin{equation*}
C_{P}\left(\omega^{q^{d}-1-n}\right) \neq\{0\} \Longleftrightarrow B_{n}(T) \equiv 0 \quad(\bmod P) \tag{6}
\end{equation*}
$$

for $1 \leq n<q^{d}-1$ (see Theorem 5.3.8 in [10]). By (4)-(6), we have the following lower bounds on p-ranks:

$$
\operatorname{rank}_{p}\left(C_{P}^{+}\right) \geq l_{P}^{+} \quad \text { and } \quad \operatorname{rank}_{p}\left(C_{P}^{-}\right) \geq l_{P}^{-}
$$

where

$$
\begin{aligned}
& l_{P}^{+}={ }^{\#}\left\{1 \leq n \leq q^{d}-2 \mid n \equiv 0(\bmod q-1), B_{n}(T) \equiv 0(\bmod P)\right\} \\
& l_{P}^{-}={ }^{\#}\left\{1 \leq n \leq q^{d}-2 \mid n \not \equiv 0(\bmod q-1), B_{n}(T) \equiv 0(\bmod P)\right\}
\end{aligned}
$$

In particular, we have

$$
\begin{equation*}
h_{P}^{+} \equiv 0 \quad\left(\bmod p^{l_{P}^{+}}\right) \quad \text { and } \quad h_{P}^{-} \equiv 0 \quad\left(\bmod p^{l_{P}^{-}}\right) \tag{7}
\end{equation*}
$$

3. Proofs of main results

For a positive integer d, we define

$$
\mathbb{T}_{d}:=\left\{F \in \mathbb{P} \mid \operatorname{deg} F=d, \operatorname{Tr}_{\mathbb{F}_{q}}\left(a_{d-1, F}\right)=-1\right\}
$$

where $a_{i, F}$ is the coefficient of degree i in F, and Tr_{E} is the trace from E to \mathbb{F}_{p} for a finite extension E / \mathbb{F}_{p}.
Lemma 3.1. $\mathbb{T}_{d} \neq \phi$.
Proof. It is clear if $d=1$ or $(q, d)=(2,2)$. So we may assume either $d \geq 2$, $q \geq 3$ or $d \geq 3, q=2$. For $u \in \mathbb{F}_{p}$, we set

$$
\mathbb{T}_{d}(u):=\left\{F \in \mathbb{P} \mid \operatorname{deg} F=d, \operatorname{Tr}_{\mathbb{F}_{q}}\left(a_{d-1, F}\right)=u\right\}
$$

By Theorem 3.25 in [7], we have

$$
\sum_{u \in \mathbb{F}_{p}}{ }^{\#} \mathbb{T}_{d}(u)=\#\{F \in \mathbb{P} \mid \operatorname{deg} F=d\}=\frac{1}{d} \sum_{k \mid d} \mu(k) q^{\frac{d}{k}}
$$

where μ is the Möbius function. This implies that

$$
d \sum_{u \in \mathbb{F}_{p}} \# \mathbb{T}_{d}(u) \geq q^{d}-2 q^{\left[\frac{d}{2}\right]}+1
$$

where $[x]$ is the greatest integer less than or equal to x. We see that

$$
d^{\#} \mathbb{T}_{d}(0) \leq \#\left\{\alpha \in \mathbb{F}_{q^{d}} \mid \operatorname{Tr}_{\mathbb{F}_{q^{d}}}(\alpha)=0\right\}=\frac{q^{d}}{p}
$$

and $\# \mathbb{T}_{d}(u)=\# \mathbb{T}_{d}\left(u \in \mathbb{F}_{p}^{\times}\right)$. Hence we have

$$
\begin{equation*}
d(p-1)^{\#} \mathbb{T}_{d} \geq\left(1-\frac{1}{p}\right) q^{d}-2 q^{\left[\frac{d}{2}\right]}+1 \tag{8}
\end{equation*}
$$

From the assumption of (q, d), the right-side of (8) is positive. We thus get $\mathbb{T}_{d} \neq \phi$.

For a positive integer d, we define

$$
I(d):=\left\{\alpha \in \mathbb{F}_{q^{d}} \mid \operatorname{Tr}_{\mathbb{F}_{q^{d}}}(\alpha)=1\right\} .
$$

Then we have:

Lemma 3.2.

(1) If $\alpha \in I(d)$, then $T^{p}-T-\alpha$ is irreducible in $\mathbb{F}_{q^{d}}[T]$.
(2) $T^{q^{d}}-T-1=\prod_{\alpha \in I(d)}\left(T^{p}-T-\alpha\right)$.

Proof. See Corollary 3.79 and Theorem 3.80 in [7].
Theorem 3.3. Assume that $F \in \mathbb{T}_{d}$. Then the polynomial $P=F\left(T^{p}-T\right)$ is irreducible in $\mathbb{F}_{q}[T]$ of degree $d p$, and the following holds:
(1) $h_{P}^{-} \equiv 0\left(\bmod q^{d p}\right)$ if $q \neq 2$.
(2) $h_{P}^{+} \equiv \begin{cases}0\left(\bmod q^{d p}\right) & \text { if } p \neq 2, \\ 0\left(\bmod q^{d}\right) & \text { if } p=2 \text { and } d \geq 2 .\end{cases}$

Proof. Let $\beta \in \overline{\mathbb{F}}_{q}$ be a root of P, and $\alpha=\beta^{p}-\beta$. Since $F(\alpha)=0$ and $F \in \mathbb{T}_{d}$, we have $\alpha \in \mathbb{F}_{q}(\alpha)=\mathbb{F}_{q^{d}}$, and

$$
\operatorname{Tr}_{\mathbb{F}_{q^{d}}}(\alpha)=\operatorname{Tr}_{\mathbb{F}_{q}}\left(-a_{d-1, F}\right)=1
$$

Hence $\alpha \in I(d)$. By Lemma $3.2(1)$, we have $\left[\mathbb{F}_{q^{d}}(\beta): \mathbb{F}_{q^{d}}\right]=p$, and so $\left[\mathbb{F}_{q}(\beta)\right.$: $\left.\mathbb{F}_{q}\right]=d p$. This implies that P is irreducible in $\mathbb{F}_{q}[T]$ of degree $d p$.

We next prove the assertion (1). Put $n=(q-1)+q^{d}$. From Lemma 2.3, we have

$$
1 \leq n<q^{d p}-1, \quad n \not \equiv 0 \quad(\bmod q-1), \quad B_{n}(T)=1-\left(T^{q^{d}}-T\right)
$$

It follows from Lemma 3.2(2) that β is a root of $B_{n}(T)$. Hence we obtain $B_{n}(T) \equiv 0(\bmod P)$. Suppose that $1 \leq n_{1}<q^{d p}-1$ satisfies with $n_{1} \equiv n p^{e}$ $\left(\bmod q^{d p}-1\right)$ for some integer $e \geq 0$. Since $A^{n_{1}} \equiv A^{n p^{e}}(\bmod P)$ for any $A \in \mathbb{A}$, we have $B_{n_{1}}(T) \equiv B_{n}(T)^{p^{e}} \equiv 0(\bmod P)$. We thus get

$$
\begin{equation*}
l_{P}^{-} \geq{ }^{\#}\left\{R\left(p^{e} n\right) \mid e=0,1,2, \ldots\right\}=d p r \tag{9}
\end{equation*}
$$

where $R(x)$ is the remainder of x divided by $q^{d p}-1$ (note $q=p^{r}$). By (7) and (9), we have $h_{P}^{-} \equiv 0\left(\bmod q^{d p}\right)$.

Finally, we prove the assertion (2). Putting $n=(q-1)+(q-1) q^{d}$, then

$$
1 \leq n<q^{d p}-1, \quad n \equiv 0 \quad(\bmod q-1), \quad B_{n}(T)=1-\left(T^{q^{d}}-1\right)^{q-1}
$$

By a similar discussion as above, we have $B_{n}(T) \equiv 0(\bmod P)$, and

$$
l_{P}^{+} \geq{ }^{\#}\left\{R\left(p^{e} n\right) \mid e=0,1,2, \ldots\right\}= \begin{cases}d p r & \text { if } p \neq 2 \\ d r & \text { if } p=2\end{cases}
$$

This leads the assertion (2).
Example 3.4. Suppose that $q=3$ and $F=T-1 \in \mathbb{T}_{1}$. By Theorem 3.3, the polynomial $P=F\left(T^{3}-T\right)=T^{3}-T-1$ is irreducible in $\mathbb{F}_{3}[T]$, and $h_{P}^{-} \equiv h_{P}^{+} \equiv 0\left(\bmod 3^{3}\right)$. In fact, we find that $h_{P}^{-}=2^{12} \cdot 3^{3} \cdot 7$ and $h_{P}^{+}=3^{9}$ by PARI/GP computation.

The next result follows immediately from Lemma 3.1 and Theorem 3.3.
Corollary 3.5. For any integer $d \geq 1(d \geq 2$ if $p=2)$, there exists a prime $P \in \mathbb{P}$ of degree dp such that

$$
\left\{\begin{array}{lll}
h_{P}^{ \pm} \equiv 0 & \left(\bmod q^{d p}\right) & \text { if } p \neq 2 \\
h_{P}^{ \pm} \equiv 0 & \left(\bmod q^{d}\right) & \text { if } q>2 \text { and } p=2 \\
h_{P}^{+} \equiv 0 & \left(\bmod q^{d}\right) & \text { if } q=2
\end{array}\right.
$$

In particular, for any positive integer e, we have

$$
\begin{cases}\# H^{ \pm}\left(p^{e}\right)=\infty & \text { if } q \neq 2 \\ { }^{\#} H^{+}\left(p^{e}\right)=\infty & \text { if } q=2\end{cases}
$$

In order to prove Theorem 1.1, we need the following form of Dirichlet's theorem.

Proposition 3.6. Suppose that $A, M \in \mathbb{A}$ are relatively prime and $\operatorname{deg} M \geq 1$. For a positive integer d, we set

$$
\mathbb{P}_{d}(A, M)=\{P \in \mathbb{P} \mid P \equiv A(\bmod M), \quad \operatorname{deg} P=d\}
$$

Then

$$
\# \mathbb{P}_{d}(A, M)=\frac{1}{\Phi(M)} \frac{q^{d}}{d}+O\left(\frac{q^{\frac{d}{2}}}{d}\right)
$$

where $\Phi(M)$ is the order of the multiplicative group of $\mathbb{A} / M \mathbb{A}$.
Proof. See Theorem 4.8 in [8].
Now we prove Theorem 1.1.
Proof. Since $\operatorname{gcd}\left(T^{p}-T, M\right)=1$, we can choose $S \in \mathbb{A}$ and a positive integer n_{0} such that

$$
\left(T^{p}-T\right) S \equiv 1 \quad(\bmod M), \quad\left(T^{p}-T\right)^{n_{0}} \equiv 1 \quad(\bmod M)
$$

We set

$$
A_{1}(T)=B\left(T^{n_{0}-1}\right), \quad M_{1}(T)=\frac{T^{n_{0}}-1}{\operatorname{gcd}\left(A_{1}^{n_{0}}, T^{n_{0}}-1\right)} .
$$

It is easy to check that A_{1} and M_{1} satisfy

$$
A \equiv A_{1}(S(T)) \quad(\bmod M), \quad M_{1}(S(T)) \equiv 0 \quad(\bmod M), \quad \operatorname{gcd}\left(M_{1}, A_{1}\right)=1
$$

Since $\operatorname{gcd}\left(M_{1}, T\right)=1$, we can choose $A_{2} \in \mathbb{A}$ such that

$$
A_{2} \equiv A_{1} \quad\left(\bmod M_{1}\right), \quad A_{2} \equiv 1-a T \quad\left(\bmod T^{2}\right)
$$

where a is an element of \mathbb{F}_{q} with $\operatorname{Tr}_{\mathbb{F}_{q}}(a)=1$. Fix a positive integer $d_{0} \geq 2$. By Proposition 3.6, there exists a prime $P_{1} \in \mathbb{P}$ of degree d satisfying with

$$
d \equiv 0 \quad\left(\bmod n_{0}\right), \quad d \geq \max \left\{d_{0}, e\right\}, \quad P_{1} \equiv A_{2} \quad\left(\bmod M_{1}\right)
$$

Putting $P_{2}(T)=T^{d} P_{1}(1 / T)$, then $P_{2} \in \mathbb{T}_{d}$ because $P_{1} \equiv 1-a T\left(\bmod T^{2}\right)$. It follows from Theorem 3.3 that the polynomial $P=P_{2}\left(T^{p}-T\right)$ is irreducible in \mathbb{A}, and we have

$$
\begin{cases}h_{P}^{+} \equiv h_{P}^{-} \equiv 0 \quad\left(\bmod p^{e}\right) & \text { if } q \neq 2 \\ h_{P}^{+} \equiv 0 \quad\left(\bmod 2^{e}\right) & \text { if } q=2\end{cases}
$$

Furthermore,

$$
P \equiv\left(T^{p}-T\right)^{d} P_{1}(S(T)) \equiv A_{1}(S(T)) \equiv A \quad(\bmod M)
$$

and $\operatorname{deg} P=d p \geq d_{0}$. Hence we have Theorem 1.1.
Example 3.7. We consider the case $q=3, M=T^{3}+T+2$, and $A=T$. If $B=T+2$, then $B\left(T^{3}-T\right) \equiv A(\bmod M)$. Therefore, by Theorem 1.1, we have ${ }^{\#} H^{ \pm}\left(A, M, 3^{e}\right)=\infty$ for any positive integer e.

From now on, we focus on the case that M is irreducible.
Theorem 3.8. Let $M \in \mathbb{P}$ and $A \in \mathbb{A}$ with

$$
\operatorname{deg} M \not \equiv 0 \quad(\bmod p), \quad \operatorname{gcd}(A, M)=1
$$

Then, for any positive integer e, we have

$$
\begin{cases}\# H^{ \pm}\left(A, M, p^{e}\right)=\infty & \text { if } q \neq 2, \tag{10}\\ \# H^{+}\left(A, M, p^{e}\right)=\infty & \text { if } q=2 .\end{cases}
$$

To prove Theorem 3.8, we first prove the next lemma.
Lemma 3.9. For $a \in \mathbb{F}_{q}^{\times}$and $d_{0} \geq 1$, there exists a prime $F \in \mathbb{T}_{d}$ such that $F(0)=a$ and $d \geq d_{0}$.

Proof. By Proposition 3.6, there exists a prime $P \in \mathbb{P}$ such that

$$
d:=\operatorname{deg} P \geq d_{0}, \quad d \not \equiv 0 \quad(\bmod p), \quad P \equiv a \quad\left(\bmod T^{q}-T\right) .
$$

Choose $z \in \mathbb{F}_{q}$ with $d \operatorname{Tr}_{\mathbb{F}_{q}}(z)=-1-\operatorname{Tr}_{\mathbb{F}_{q}}\left(a_{d-1, P}\right)$, and put $F(T)=P(T+z)$.
Noting that

$$
\operatorname{Tr}_{\mathbb{F}_{q}}\left(a_{d-1, F}\right)=\operatorname{Tr}_{\mathbb{F}_{q}}\left(d z+a_{d-1, P}\right)=-1
$$

we have $F \in \mathbb{T}_{d}$. Furthermore, we have $F(0)=P(z)=a$ because $P \equiv a$ $\left(\bmod T^{q}-T\right)$.

Now we prove Theorem 3.8.
Proof of Theorem 3.8. Assume that $\operatorname{gcd}\left(M, T^{p}-T\right)=1$. Let $\mathcal{R}=\mathbb{A} / M \mathbb{A}$ be the residue field of M, and let $\alpha=T^{p}-T \bmod M \in \mathcal{R}$. Since $\mathcal{R} / \mathbb{F}_{q}(\alpha)$ is an Artin-Schreier extension, we have $\left[\mathcal{R}: \mathbb{F}_{q}(\alpha)\right]=1$ or p. From $\operatorname{deg} M \not \equiv 0$ $(\bmod p)$, we must have $\left[\mathcal{R}: \mathbb{F}_{q}(\alpha)\right]=1$. It follows that there exists $B \in \mathbb{A}$ with $A \equiv B\left(T^{p}-T\right)(\bmod M)$. Therefore, by Theorem 1.1, the equality (10) holds.

We next consider the case $\operatorname{gcd}\left(M, T^{p}-T\right) \neq 1$. Since M is irreducible, we have that $M=T-a$ for some $a \in \mathbb{F}_{p}$. Fix an integer $d_{0} \geq \max \{2, e\}$. By Lemma 3.9, there exists a prime $F \in \mathbb{T}_{d}$ such that $F(0)=A(a)$ and $d \geq d_{0}$. From Theorem 3.3, the polynomial $P=F\left(T^{p}-T\right)$ is irreducible in \mathbb{A}, and

$$
\begin{cases}h_{P}^{+} \equiv h_{P}^{-} \equiv 0 \quad\left(\bmod p^{e}\right) & \text { if } q \neq 2 \\ h_{P}^{+} \equiv 0 \quad\left(\bmod 2^{e}\right) & \text { if } q=2\end{cases}
$$

Furthermore, we have $\operatorname{deg} P=d p \geq d_{0}$ and $P \equiv A(\bmod M)$. Hence we obtain the equality (10).

Acknowledgements. The author would like to thank the referee for many helpful suggestions.

References

[1] K. Q. Feng, A note on irregular prime polynomials in cyclotomic function field theory, J. Number Theory 22 (1986), no. 2, 240-245. https://doi.org/10.1016/0022-314X (86) 90071-5
[2] E.-U. Gekeler, On power sums of polynomials over finite fields, J. Number Theory 30 (1988), no. 1, 11-26. https://doi.org/10.1016/0022-314X(88) 90023-6
[3] D. M. Goss, Kummer and Herbrand criterion in the theory of function fields, Duke Math. J. 49 (1982), no. 2, 377-384. http://projecteuclid.org/euclid.dmj/ 1077315235
[4] D. M. Goss and W. M. Sinnott, Class-groups of function fields, Duke Math. J. 52 (1985), no. 2, 507-516. https://doi.org/10.1215/S0012-7094-85-05225-1
[5] H. L. Lee, Power sums of polynomials in a Galois field, Duke Math. J. 10 (1943), 277-292. http://projecteuclid.org/euclid.dmj/1077471940
[6] J. Lee and Y. Lee, Infinite families of irregular primes in cyclotomic function fields, J. Number Theory 207 (2020), 1-21. https://doi.org/10.1016/j.jnt.2018.09.008
[7] R. Lidl and H. Niederreiter, Finite Fields, second edition, Encyclopedia of Mathematics and its Applications, 20, Cambridge Univ. Press, Cambridge, 1997.
[8] M. I. Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics, 210, Springer, New York, 2002. https://doi.org/10.1007/978-1-4757-6046-0
[9] H. Stichtenoth, Algebraic Function Fields and Codes, second edition, Graduate Texts in Mathematics, 254, Springer, Berlin, 2009.
[10] D. S. Thakur, Function Field Arithmetic, World Sci. Publishing, Inc., River Edge, NJ, 2004. https://doi.org/10.1142/9789812562388
[11] E. Le Yaouanc, On real quadratic function fields, J. Number Theory 123 (2007), no. 1, 27-34. https://doi.org/10.1016/j.jnt.2006.05.018

Daisuke Shiomi
Department of Science
Faculty of Science
Yamagata University
Kojirakawa-machi 1-4-12
Yamagata 990-8560, Japan
Email address: shiomi@sci.kj.yamagata-u.ac.jp

[^0]: Received September 9, 2022; Revised December 15, 2022; Accepted February 7, 2023.
 2020 Mathematics Subject Classification. Primary 11R29, 11R60.
 Key words and phrases. Class numbers, cyclotomic function fields.

