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THE p-PART OF DIVISOR CLASS NUMBERS FOR
CYCLOTOMIC FUNCTION FIELDS

DAISUKE SHIOMI

ABSTRACT. In this paper, we construct explicitly an infinite family of
primes P with hf, = 0 (mod ¢4°8 P), where hﬁ are the plus and minus
parts of the divisor class number of the P-th cyclotomic function field over
Fq(T). By using this result and Dirichlet’s theorem, we give a condition
of A, M € F4[T] such that there are infinitely many primes P satisfying
with h;‘; =0 (mod p¢) and P = A (mod M).

1. Introduction

Let p be prime. Let Fy be a finite field with ¢ = p” elements. Let k = F4(T)
be the rational function field over F,, and let A = F,[T] be the associated
polynomial ring. We denote by P the set of all monic irreducible polynomials
in A. For a monic polynomial N € A, let Ky, KI'\*', be the N-th cyclotomic
function field, and its maximal real subfield, respectively. Let hy (resp. h)
be the divisor class number of Ky (resp. K), and hy = hy/h};.

For a positive integer n, we consider the infinity of the set of primes

H*n)={PeP|hy=0 (modn)}.

Goss [3] found Kummer’s criterion for function fields, and proved that # H~(p)
= oo when ¢ = p > 3. Feng [1] extended Goss’s results and showed that
#H*(p) = oo for a general q. Yaouanc [11] used elliptic curves over finite
fields to prove that # H~(q) = oo. He also showed that there exist infinitely
many primes P € P such that h(O}) = 0 (mod q), where h(O}) is the ideal
class number for K;;. This result implies # H*(q) = oo because h}j = 0
(mod h(O3})). More recently, Lee and Lee [6] gave a lower bound on the p-
rank of the divisor class group for K;{, and proved that #H+(pp(p_1)) = 00
when ¢ = p.
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Our first goal of this paper is to construct explicitly an infinite family of
primes P € P with

(1) ht =0 (mod ¢?&”)
(see Theorem 3.3 and Corollary 3.5). As a corollary of this result, we have

PH*(p?) =0 ifq#2,
(2) {#H+(pe)—oo ifg=2

for any positive integer e.
Secondly, we prove a much stronger form of (2). For A, M € A and a positive
integer n, we define

H*(A,M,n) = {PeP|P=A (mod M), hi =0 (mod n)}.
Then we have:
Theorem 1.1. Let A, M € A with
degM > 1, ged(M,T? —T) =ged(M, A) = 1.

We further assume that there exits a polynomial B € A such that A = B(T?P-T)
(mod M). Then, for any positive integer e, we have

5 FHE(A,M,p°) =00 ifq#2,
(3) #PHY(A, M,p°) =00 ifq=2.

This paper is organized as follows. In Section 2, based on the idea of Lee-Lee
[6], we give lower bounds on the p-parts of divisor class numbers for cyclotomic
function fields. In Section 3, we use these lower bounds to construct an infinite
family of primes P € P satisfying with (1). By using this result and Dirichlet’s
theorem, we prove Theorem 1.1.

2. Lower bounds of divisor class numbers
For a positive integer n, the nth Goss-Bernoulli number is defined by
> si(n ifnz0 modq—1,
Yoo —tsi(n) ifn=0 modgqg—1.

Here,
si(n) = Z A",
Ach(i)
where A(i) is the set of all monic polynomials in A of degree i. We put
I(n)=ao+ai+-+aq1,
where ag + a1q+ - - + ag—1¢%" is the g-adic expansion of n.

Lemma 2.1 (cf. [2] Proposition 2.11). Ifi > 1l(n)/(q — 1), then s;(n) = 0. In
particular, B, (T) is a polynomial in A.
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Lemma 2.2 (cf. [2] Lemma 6.1). If n =0 (mod ¢ — 1), then we have

Zsz(n) =0.
i=0
Lemma 2.3.
(1) Ifn=_(q—1)+¢° (e=1,2,...), then B,(T) =1— (T9 —T).
(2) Ifn=(qg—1)+(q—1)¢° (e =1,2,...), then B, (T) = 1— (79 —T)4~ 1.

Proof. By Lemmas 2.1 and 2.2, we have
1+ s1(n) ifg>2andn=(¢g—1)+ ¢,

B,(T) = i
—s1(n) —2s2(n) =2+s1(n) ifn=(¢g—1)+ (¢ —1)g¢°.
By Theorems 4.1 and 4.2 in [5], we have

smy={ 0" D) it >2andn=(g- 1)+,
1\n)= —1— (T —=T)1! ifn=(g—1)+ (qg— 1)¢"
Therefore, the result follows. O

Let P € P be a prime of degree d. We denote by Cp (resp. C;) the p-primary
part of the divisor class group of degree 0 for Kp (resp. ng). Let

0 :Ch = Cp (D] lig, s (D))
be the conorm map, and put Cp (p) = coker ¢ (cf. Chapter 3 in [9]).
Lemma 2.4. The map ¢ is injective. In particular, the order of Cp (p) is equal
to the p-part of hp.
Proof. Suppose that [D] € ker ¢. Then we have Ikp K (D) = (a)kp for some

a € (Kp)*. Fix a generator o of the Galois group for Kp/K}. Then we see
that (o) g, = (a)k,. Hence a”~! € FY, and so a?™' € (K#$)*. We thus get
[D] = [0] because ged(q — 1,p) = 1. O

Let W be the ring of Witt vectors of A/PA, and m be its maximal ideal.
Let w : (A/PA)* — W be the Teichmiiller character such that w(z) = =

(mod m) for any = € (A/PA)*. Then we have the decomposition into isotypical
components according to characters of (A/PA)*:

q?-2

Cp @z, W= @ Cp(w")

n=1
(Similarly for C3). Tt is easy to check that
Ch(w") ~Cp(w") and Cp(w™) ={0} if n=0 (mod g — 1),
and
Ch(w™) = {0} and Cp(w")~Cp(w™) ifn#0 (mod g —1).
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Hence we obtain

q?-2

(4) Cp oz, W~ P Cpwh),
i
q?-2

(5) Cp @z, W=~ P Cpw).

Goss and Sinnott [4] proved that
(6) Cp(wi"~17") £ {0} < B,(T)=0 (mod P)

for 1 <n < g?—1 (see Theorem 5.3.8 in [10]). By (4)-(6), we have the following
lower bounds on p-ranks:

rank,(Cp) > 15 and rank,(Cp) > Ip,

where
Ib=#{1<n<q¢"-2|n=0 (mod ¢g—1), B,(T)=0 (mod P)},
lp=7{1<n<q¢"—2|n#0 (mod q—1), B,(T)=0 (mod P)}
In particular, we have
(7) hf =0 (mod pl;‘) and hp =0 (modp'r).

3. Proofs of main results

For a positive integer d, we define
Ty := {F ep ‘ degF = d, Tr]Fq(ad—l,F) = —1},

where a; r is the coefficient of degree ¢ in F', and Trg is the trace from E to
F,, for a finite extension E/F,,.

Lemma 3.1. Ty # ¢.

Proof. Tt is clear if d = 1 or (¢,d) = (2,2). So we may assume either d > 2,
g>3ord2>3,q=2. ForuéckF,, weset

Ty(u) :={F € P | deg F = d, Trr (aqg—1,r) = u}.
By Theorem 3.25 in [7], we have
1 d
u;p#ﬂrdw) =#{FeP|degF =d} = dgu(k)q%
where p is the Mobius function. This implies that
d " #Ta(u) > ¢ — 2418 +1,

u€lF,
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where [z] is the greatest integer less than or equal to x. We see that

d
d#T(0) < #{a € Fya | Tr ,(a) =0} = L,
! P
and #Tg(u) = #T4 (u € ). Hence we have

1 d
(8) d(p — 1)*Tg > (1 - p) q" —2q1%) + 1.

From the assumption of (g,d), the right-side of (8) is positive. We thus get
Ta # ¢. O

For a positive integer d, we define
I(d) :={a€Fu| Trqu(oz) =1}
Then we have:

Lemma 3.2.
(1) If? € I(d), then TP — T — « is irreducible in Fga[T].
2) 79" T —1=[loeso(T* — T — ).

Proof. See Corollary 3.79 and Theorem 3.80 in [7]. O

Theorem 3.3. Assume that F € Ty. Then the polynomial P = F(TP —T) is
irreducible in Fy[T| of degree dp, and the following holds:
(1) hp =0 (mod ¢?) if q # 2.
+_ 0 (mod g®) ifp#2,
(2) hP = d .
0 (mod ¢*) ifp=2andd>2.

Proof. Let 8 € Fq be a root of P, and @ = P — 3. Since F(a) =0 and F € Ty,
we have o € Fy(a) = Fa, and

TI']qu (a) = Tr]Fq(—ad_LF) =1.

Hence o € I(d). By Lemma 3.2(1), we have [Fya(3) : Fa] = p, and so [F,(B) :
F,] = dp. This implies that P is irreducible in Fy[T] of degree dp.

We next prove the assertion (1). Put n = (¢ — 1) + ¢%. From Lemma 2.3,
we have

1<n<q?—-1, n#0 (modgq—1), Bn(T)zl—(qu—T).

It follows from Lemma 3.2(2) that 5 is a root of B,(T). Hence we obtain
B,(T) = 0 (mod P). Suppose that 1 < n; < ¢ — 1 satisfies with n; = np®
(mod ¢ — 1) for some integer e > 0. Since A™ = A™" (mod P) for any
A € A, we have B, (T) = B,(T)”" =0 (mod P). We thus get
9) lp = "{R(pn) | € =0,1,2,..} = dpr,

where R(x) is the remainder of z divided by ¢?7 — 1 (note ¢ = p"). By (7) and
(9), we have hp =0 (mod ¢).
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Finally, we prove the assertion (2). Putting n = (¢ — 1) + (¢ — 1)¢%, then
1<n<q¢®?—-1, n=0 (modgq—1), Bn(T)zl—(qu—l)q_l.
By a similar discussion as above, we have B, (T) =0 (mod P), and

dpr if p# 2,

15 > #{R(p* =0,1,2,...} =
b2 #{R(pn) | e } {dr .

This leads the assertion (2). O

Example 3.4. Suppose that ¢ = 3 and F' =T —1 € T;. By Theorem 3.3,
the polynomial P = F(T3® —T) = T3 — T — 1 is irreducible in F3[T], and
hp = hE =0 (mod 3%). In fact, we find that hp = 21233 .7 and hs = 3% by
PARI/GP computation.

The next result follows immediately from Lemma 3.1 and Theorem 3.3.

Corollary 3.5. For any integer d > 1 (d > 2 if p = 2), there exists a prime
P € P of degree dp such that

hs =0 (mod q%) ifp+#2,
th;:.EO (mod ¢%) ifq>2andp=2,
h}t =0 (mod ¢%) ifq=2.

In particular, for any positive integer e, we have

#HE(p?) =oc0  if q#2,
FHT(p) =00 ifg=2.

In order to prove Theorem 1.1, we need the following form of Dirichlet’s
theorem.

Proposition 3.6. Suppose that A, M € A are relatively prime and deg M > 1.
For a positive integer d, we set

Py(A,M)={PeP|P=A (mod M), degP =d}.

Then
d

4
#P4(A, M) = ﬁ% +0 (‘i;) :
where ®(M) is the order of the multiplicative group of A/MA.
Proof. See Theorem 4.8 in [8]. O
Now we prove Theorem 1.1.

Proof. Since ged(TP — T, M) = 1, we can choose S € A and a positive integer
ng such that

(TP -T7)S=1 (mod M), (IT?P-T)" =1 (mod M).
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We set

T — 1
_ no—1 —
A(T) = B(T ), Mi(T) = ged(A7°, Tmo — 1)

It is easy to check that A; and M; satisfy
A=A(S(T)) (mod M), M(S(T))=0 (mod M), ged(My,A;)=1.
Since ged(M1,T) = 1, we can choose Az € A such that
Ay =A; (mod M), As=1—aT (mod T?),
where a is an element of F, with Trp, (a) = 1. Fix a positive integer doy > 2.
By Proposition 3.6, there exists a prime P; € P of degree d satisfying with
d=0 (modng), d>max{dg,e}, P =As (mod M).
Putting Py (T) = T%Py(1/T), then P, € Ty because P, =1 —aT (mod T2). It
follows from Theorem 3.3 that the polynomial P = P,(T? — T) is irreducible
in A, and we have

{h;—h; =0 (mod p®) ifq#2,

ht =0 (mod 2°) if g =2.
Furthermore,
P= (TP —T)P,(S(T)) = A1 (S(T)) = A (mod M),
and deg P = dp > dy. Hence we have Theorem 1.1. O

Example 3.7. We consider the case ¢ =3, M =T34+ T+ 2, and A = T. If
B =T +2, then B(T? —T) = A (mod M). Therefore, by Theorem 1.1, we
have # H* (A, M, 3¢) = oo for any positive integer e.

From now on, we focus on the case that M is irreducible.
Theorem 3.8. Let M € P and A € A with
degM £0 (mod p), ged(4, M) =1.
Then, for any positive integer e, we have

10 #HE(A M, p°) =00 if ¢ #2,
(10) FPHY (A, M,p°) =00 ifq=2.

To prove Theorem 3.8, we first prove the next lemma.

Lemma 3.9. For a € Fy and dy > 1, there exists a prime F' € Tq such that
F(0)=a and d > dy.

Proof. By Proposition 3.6, there exists a prime P € [P such that
d:=degP >dy, d#0 (modp), P=a (modT?-T).

Choose z € Fy with dTrp, (2) = —1—=Trg, (aq—1,p), and put F(T) = P(T + z).
Noting that

Trg,(aq-1,r) = Trr,(dz + aqg_1,p) = —1,
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we have F' € T;. Furthermore, we have F(0) = P(z) = a because P = a
(mod T? —T). O

Now we prove Theorem 3.8.

Proof of Theorem 3.8. Assume that ged(M,T? —T) = 1. Let R = A/MA be
the residue field of M, and let « = T? — T mod M € R. Since R/F4(a) is
an Artin-Schreier extension, we have [R : Fy(o)] = 1 or p. From degM # 0
(mod p), we must have [R : Fy(a)] = 1. It follows that there exists B € A with
A=B(T?—-T) (mod M). Therefore, by Theorem 1.1, the equality (10) holds.
We next consider the case ged(M, TP —T) # 1. Since M is irreducible, we
have that M = T — a for some a € F,. Fix an integer dy > max{2,e}. By
Lemma 3.9, there exists a prime F' € Ty such that F(0) = A(a) and d > do.
From Theorem 3.3, the polynomial P = F(TP? — T) is irreducible in A, and

hpf=hp = (mod p®) if g # 2,
hH =0 (mod 2°) if ¢ = 2.

Furthermore, we have deg P = dp > dp and P = A (mod M). Hence we obtain
the equality (10). O
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