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Abstract. In this paper, we construct explicitly an infinite family of

primes P with h±
P ≡ 0 (mod qdegP ), where h±

P are the plus and minus
parts of the divisor class number of the P -th cyclotomic function field over

Fq(T ). By using this result and Dirichlet’s theorem, we give a condition

of A,M ∈ Fq [T ] such that there are infinitely many primes P satisfying

with h±
P ≡ 0 (mod pe) and P ≡ A (mod M).

1. Introduction

Let p be prime. Let Fq be a finite field with q = pr elements. Let k = Fq(T )
be the rational function field over Fq, and let A = Fq[T ] be the associated
polynomial ring. We denote by P the set of all monic irreducible polynomials
in A. For a monic polynomial N ∈ A, let KN , K+

N be the N -th cyclotomic

function field, and its maximal real subfield, respectively. Let hN (resp. h+
N )

be the divisor class number of KN (resp. K+
N ), and h−

N = hN/h+
N .

For a positive integer n, we consider the infinity of the set of primes

H±(n) =
{
P ∈ P | h±

P ≡ 0 (mod n)
}
.

Goss [3] found Kummer’s criterion for function fields, and proved that #H−(p)
= ∞ when q = p ≥ 3. Feng [1] extended Goss’s results and showed that
#H±(p) = ∞ for a general q. Yaouanc [11] used elliptic curves over finite
fields to prove that #H−(q) = ∞. He also showed that there exist infinitely
many primes P ∈ P such that h(O+

P ) ≡ 0 (mod q), where h(O+
P ) is the ideal

class number for K+
P . This result implies #H+(q) = ∞ because h+

P ≡ 0

(mod h(O+
P )). More recently, Lee and Lee [6] gave a lower bound on the p-

rank of the divisor class group for K+
P , and proved that #H+(pp(p−1)) = ∞

when q = p.
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Our first goal of this paper is to construct explicitly an infinite family of
primes P ∈ P with

h±
P ≡ 0 (mod qdegP )(1)

(see Theorem 3.3 and Corollary 3.5). As a corollary of this result, we have{
#H±(pe) = ∞ if q ̸= 2,
#H+(pe) = ∞ if q = 2

(2)

for any positive integer e.
Secondly, we prove a much stronger form of (2). For A,M ∈ A and a positive

integer n, we define

H±(A,M, n) =
{
P ∈ P | P ≡ A (mod M), h±

P ≡ 0 (mod n)
}
.

Then we have:

Theorem 1.1. Let A,M ∈ A with

degM ≥ 1, gcd(M,T p − T ) = gcd(M,A) = 1.

We further assume that there exits a polynomial B ∈ A such that A ≡ B(T p−T )
(mod M). Then, for any positive integer e, we have{

#H±(A,M, pe) = ∞ if q ̸= 2,
#H+(A,M, pe) = ∞ if q = 2.

(3)

This paper is organized as follows. In Section 2, based on the idea of Lee-Lee
[6], we give lower bounds on the p-parts of divisor class numbers for cyclotomic
function fields. In Section 3, we use these lower bounds to construct an infinite
family of primes P ∈ P satisfying with (1). By using this result and Dirichlet’s
theorem, we prove Theorem 1.1.

2. Lower bounds of divisor class numbers

For a positive integer n, the nth Goss-Bernoulli number is defined by

Bn(T ) =

{ ∑∞
i=0 si(n) if n ̸≡ 0 mod q − 1,∑∞
i=0 −isi(n) if n ≡ 0 mod q − 1.

Here,

si(n) =
∑

A∈A(i)

An,

where A(i) is the set of all monic polynomials in A of degree i. We put

l(n) = a0 + a1 + · · ·+ ad−1,

where a0 + a1q + · · ·+ ad−1q
d−1 is the q-adic expansion of n.

Lemma 2.1 (cf. [2] Proposition 2.11). If i > l(n)/(q − 1), then si(n) = 0. In
particular, Bn(T ) is a polynomial in A.
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Lemma 2.2 (cf. [2] Lemma 6.1). If n ≡ 0 (mod q − 1), then we have
∞∑
i=0

si(n) = 0.

Lemma 2.3.

(1) If n = (q − 1) + qe (e = 1, 2, . . .), then Bn(T ) = 1− (T qe − T ).
(2) If n = (q−1)+(q−1)qe (e = 1, 2, . . .), then Bn(T ) = 1− (T qe −T )q−1.

Proof. By Lemmas 2.1 and 2.2, we have

Bn(T ) =

{
1 + s1(n) if q > 2 and n = (q − 1) + qe,

−s1(n)− 2s2(n) = 2 + s1(n) if n = (q − 1) + (q − 1)qe.

By Theorems 4.1 and 4.2 in [5], we have

s1(n) =

{
−(T qe − T ) if q > 2 and n = (q − 1) + qe,

−1− (T qe − T )q−1 if n = (q − 1) + (q − 1)qe.

Therefore, the result follows. □

Let P ∈ P be a prime of degree d. We denote by CP (resp. C+
P ) the p-primary

part of the divisor class group of degree 0 for KP (resp. K+
P ). Let

φ : C+
P → CP ([D] 7→ [iKP /K+

P
(D)])

be the conorm map, and put C−
P (p) = coker φ (cf. Chapter 3 in [9]).

Lemma 2.4. The map φ is injective. In particular, the order of C−
P (p) is equal

to the p-part of h−
P .

Proof. Suppose that [D] ∈ kerφ. Then we have iKP /K+
P
(D) = (α)KP

for some

α ∈ (KP )
×. Fix a generator σ of the Galois group for KP /K

+
P . Then we see

that (ασ)KP
= (α)KP

. Hence ασ−1 ∈ F×
q , and so αq−1 ∈ (K+

P )×. We thus get
[D] = [0] because gcd(q − 1, p) = 1. □

Let W be the ring of Witt vectors of A/PA, and m be its maximal ideal.
Let ω : (A/PA)× → W be the Teichmüller character such that ω(x) ≡ x
(mod m) for any x ∈ (A/PA)×. Then we have the decomposition into isotypical
components according to characters of (A/PA)×:

CP ⊗Zp
W =

qd−2⊕
n=1

CP (ω
n)

(Similarly for C±
P ). It is easy to check that

C+
P (ωn) ≃ CP (ω

n) and C−
P (ωn) = {0} if n ≡ 0 (mod q − 1),

and

C+
P (ωn) = {0} and C−

P (ωn) ≃ CP (ω
n) if n ̸≡ 0 (mod q − 1).
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Hence we obtain

C+
P ⊗Zp

W ≃
qd−2⊕
n=1

q−1 | n

CP (ω
n),(4)

C−
P ⊗Zp

W ≃
qd−2⊕
n=1

q−1 ∤ n

CP (ω
n).(5)

Goss and Sinnott [4] proved that

CP (ω
qd−1−n) ̸= {0} ⇐⇒ Bn(T ) ≡ 0 (mod P )(6)

for 1 ≤ n < qd−1 (see Theorem 5.3.8 in [10]). By (4)-(6), we have the following
lower bounds on p-ranks:

rankp(C
+
P ) ≥ l+P and rankp(C

−
P ) ≥ l−P ,

where

l+P = #{1 ≤ n ≤ qd − 2 | n ≡ 0 (mod q − 1), Bn(T ) ≡ 0 (mod P )},

l−P = #{1 ≤ n ≤ qd − 2 | n ̸≡ 0 (mod q − 1), Bn(T ) ≡ 0 (mod P )}.

In particular, we have

h+
P ≡ 0 (mod pl

+
P ) and h−

P ≡ 0 (mod pl
−
P ).(7)

3. Proofs of main results

For a positive integer d, we define

Td := {F ∈ P | degF = d, TrFq (ad−1,F ) = −1},

where ai,F is the coefficient of degree i in F , and TrE is the trace from E to
Fp for a finite extension E/Fp.

Lemma 3.1. Td ̸= ϕ.

Proof. It is clear if d = 1 or (q, d) = (2, 2). So we may assume either d ≥ 2,
q ≥ 3 or d ≥ 3, q = 2. For u ∈ Fp, we set

Td(u) := {F ∈ P | degF = d, TrFq
(ad−1,F ) = u}.

By Theorem 3.25 in [7], we have∑
u∈Fp

#Td(u) =
#{F ∈ P | degF = d} =

1

d

∑
k|d

µ(k)q
d
k ,

where µ is the Möbius function. This implies that

d
∑
u∈Fp

#Td(u) ≥ qd − 2q[
d
2 ] + 1,
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where [x] is the greatest integer less than or equal to x. We see that

d#Td(0) ≤ #{α ∈ Fqd | TrF
qd
(α) = 0} =

qd

p
,

and #Td(u) =
#Td (u ∈ F×

p ). Hence we have

d(p− 1)#Td ≥
(
1− 1

p

)
qd − 2q[

d
2 ] + 1.(8)

From the assumption of (q, d), the right-side of (8) is positive. We thus get
Td ̸= ϕ. □

For a positive integer d, we define

I(d) := {α ∈ Fqd | Tr F
qd
(α) = 1}.

Then we have:

Lemma 3.2.

(1) If α ∈ I(d), then T p − T − α is irreducible in Fqd [T ].

(2) T qd − T − 1 =
∏

α∈I(d)(T
p − T − α).

Proof. See Corollary 3.79 and Theorem 3.80 in [7]. □

Theorem 3.3. Assume that F ∈ Td. Then the polynomial P = F (T p − T ) is
irreducible in Fq[T ] of degree dp, and the following holds:

(1) h−
P ≡ 0 (mod qdp) if q ̸= 2.

(2) h+
P ≡

{
0 (mod qdp) if p ̸= 2,

0 (mod qd) if p = 2 and d ≥ 2.

Proof. Let β ∈ Fq be a root of P , and α = βp−β. Since F (α) = 0 and F ∈ Td,
we have α ∈ Fq(α) = Fqd , and

TrF
qd
(α) = TrFq

(−ad−1,F ) = 1.

Hence α ∈ I(d). By Lemma 3.2(1), we have [Fqd(β) : Fqd ] = p, and so [Fq(β) :
Fq] = dp. This implies that P is irreducible in Fq[T ] of degree dp.

We next prove the assertion (1). Put n = (q − 1) + qd. From Lemma 2.3,
we have

1 ≤ n < qdp − 1, n ̸≡ 0 (mod q − 1), Bn(T ) = 1− (T qd − T ).

It follows from Lemma 3.2(2) that β is a root of Bn(T ). Hence we obtain
Bn(T ) ≡ 0 (mod P ). Suppose that 1 ≤ n1 < qdp − 1 satisfies with n1 ≡ npe

(mod qdp − 1) for some integer e ≥ 0. Since An1 ≡ Anpe

(mod P ) for any
A ∈ A, we have Bn1

(T ) ≡ Bn(T )
pe ≡ 0 (mod P ). We thus get

l−P ≥ #{R(pen) | e = 0, 1, 2, . . .} = dpr,(9)

where R(x) is the remainder of x divided by qdp − 1 (note q = pr). By (7) and
(9), we have h−

P ≡ 0 (mod qdp).
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Finally, we prove the assertion (2). Putting n = (q − 1) + (q − 1)qd, then

1 ≤ n < qdp − 1, n ≡ 0 (mod q − 1), Bn(T ) = 1− (T qd − 1)q−1.

By a similar discussion as above, we have Bn(T ) ≡ 0 (mod P ), and

l+P ≥ #{R(pen) | e = 0, 1, 2, . . .} =

{
dpr if p ̸= 2,

dr if p = 2.

This leads the assertion (2). □

Example 3.4. Suppose that q = 3 and F = T − 1 ∈ T1. By Theorem 3.3,
the polynomial P = F (T 3 − T ) = T 3 − T − 1 is irreducible in F3[T ], and
h−
P ≡ h+

P ≡ 0 (mod 33). In fact, we find that h−
P = 212 · 33 · 7 and h+

P = 39 by
PARI/GP computation.

The next result follows immediately from Lemma 3.1 and Theorem 3.3.

Corollary 3.5. For any integer d ≥ 1 (d ≥ 2 if p = 2), there exists a prime
P ∈ P of degree dp such that

h±
P ≡ 0 (mod qdp) if p ̸= 2,

h±
P ≡ 0 (mod qd) if q > 2 and p = 2,

h+
P ≡ 0 (mod qd) if q = 2.

In particular, for any positive integer e, we have{
#H±(pe) = ∞ if q ̸= 2,
#H+(pe) = ∞ if q = 2.

In order to prove Theorem 1.1, we need the following form of Dirichlet’s
theorem.

Proposition 3.6. Suppose that A,M ∈ A are relatively prime and degM ≥ 1.
For a positive integer d, we set

Pd(A,M) = {P ∈ P | P ≡ A (mod M), degP = d}.

Then

#Pd(A,M) =
1

Φ(M)

qd

d
+O

(
q

d
2

d

)
,

where Φ(M) is the order of the multiplicative group of A/MA.

Proof. See Theorem 4.8 in [8]. □

Now we prove Theorem 1.1.

Proof. Since gcd(T p − T,M) = 1, we can choose S ∈ A and a positive integer
n0 such that

(T p − T )S ≡ 1 (mod M), (T p − T )n0 ≡ 1 (mod M).
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We set

A1(T ) = B(Tn0−1), M1(T ) =
Tn0 − 1

gcd(An0
1 , Tn0 − 1)

.

It is easy to check that A1 and M1 satisfy

A ≡ A1(S(T )) (mod M), M1(S(T )) ≡ 0 (mod M), gcd(M1, A1) = 1.

Since gcd(M1, T ) = 1, we can choose A2 ∈ A such that

A2 ≡ A1 (mod M1), A2 ≡ 1− aT (mod T 2),

where a is an element of Fq with TrFq (a) = 1. Fix a positive integer d0 ≥ 2.
By Proposition 3.6, there exists a prime P1 ∈ P of degree d satisfying with

d ≡ 0 (mod n0), d ≥ max{d0, e}, P1 ≡ A2 (mod M1).

Putting P2(T ) = T dP1(1/T ), then P2 ∈ Td because P1 ≡ 1− aT (mod T 2). It
follows from Theorem 3.3 that the polynomial P = P2(T

p − T ) is irreducible
in A, and we have {

h+
P ≡ h−

P ≡ 0 (mod pe) if q ̸= 2,

h+
P ≡ 0 (mod 2e) if q = 2.

Furthermore,

P ≡ (T p − T )dP1(S(T )) ≡ A1(S(T )) ≡ A (mod M),

and degP = dp ≥ d0. Hence we have Theorem 1.1. □

Example 3.7. We consider the case q = 3, M = T 3 + T + 2, and A = T . If
B = T + 2, then B(T 3 − T ) ≡ A (mod M). Therefore, by Theorem 1.1, we
have #H±(A,M, 3e) = ∞ for any positive integer e.

From now on, we focus on the case that M is irreducible.

Theorem 3.8. Let M ∈ P and A ∈ A with

degM ̸≡ 0 (mod p), gcd(A,M) = 1.

Then, for any positive integer e, we have{
#H±(A,M, pe) = ∞ if q ̸= 2,
#H+(A,M, pe) = ∞ if q = 2.

(10)

To prove Theorem 3.8, we first prove the next lemma.

Lemma 3.9. For a ∈ F×
q and d0 ≥ 1, there exists a prime F ∈ Td such that

F (0) = a and d ≥ d0.

Proof. By Proposition 3.6, there exists a prime P ∈ P such that

d := degP ≥ d0, d ̸≡ 0 (mod p), P ≡ a (mod T q − T ).

Choose z ∈ Fq with dTr Fq (z) = −1−Tr Fq (ad−1,P ), and put F (T ) = P (T +z).
Noting that

Tr Fq
(ad−1,F ) = Tr Fq

(dz + ad−1,P ) = −1,
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we have F ∈ Td. Furthermore, we have F (0) = P (z) = a because P ≡ a
(mod T q − T ). □

Now we prove Theorem 3.8.

Proof of Theorem 3.8. Assume that gcd(M,T p − T ) = 1. Let R = A/MA be
the residue field of M , and let α = T p − T mod M ∈ R. Since R/Fq(α) is
an Artin-Schreier extension, we have [R : Fq(α)] = 1 or p. From degM ̸≡ 0
(mod p), we must have [R : Fq(α)] = 1. It follows that there exists B ∈ A with
A ≡ B(T p −T ) (mod M). Therefore, by Theorem 1.1, the equality (10) holds.

We next consider the case gcd(M,T p − T ) ̸= 1. Since M is irreducible, we
have that M = T − a for some a ∈ Fp. Fix an integer d0 ≥ max{2, e}. By
Lemma 3.9, there exists a prime F ∈ Td such that F (0) = A(a) and d ≥ d0.
From Theorem 3.3, the polynomial P = F (T p − T ) is irreducible in A, and{

h+
P ≡ h−

P ≡ 0 (mod pe) if q ̸= 2,

h+
P ≡ 0 (mod 2e) if q = 2.

Furthermore, we have degP = dp ≥ d0 and P ≡ A (mod M). Hence we obtain
the equality (10). □
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