DOI QR코드

DOI QR Code

THE p-PART OF DIVISOR CLASS NUMBERS FOR CYCLOTOMIC FUNCTION FIELDS

  • Daisuke Shiomi (Department of Science Faculty of Science Yamagata University)
  • Received : 2022.09.09
  • Accepted : 2023.02.07
  • Published : 2023.07.31

Abstract

In this paper, we construct explicitly an infinite family of primes P with h±P ≡ 0 (mod qdeg P), where h±P are the plus and minus parts of the divisor class number of the P-th cyclotomic function field over 𝔽q(T). By using this result and Dirichlet's theorem, we give a condition of A, M ∈ 𝔽q[T] such that there are infinitely many primes P satisfying with h±P ≡ 0 (mod pe) and P ≡ A (mod M).

Keywords

Acknowledgement

The author would like to thank the referee for many helpful suggestions.

References

  1. K. Q. Feng, A note on irregular prime polynomials in cyclotomic function field theory, J. Number Theory 22 (1986), no. 2, 240-245. https://doi.org/10.1016/0022-314X(86)90071-5
  2. E.-U. Gekeler, On power sums of polynomials over finite fields, J. Number Theory 30 (1988), no. 1, 11-26. https://doi.org/10.1016/0022-314X(88)90023-6
  3. D. M. Goss, Kummer and Herbrand criterion in the theory of function fields, Duke Math. J. 49 (1982), no. 2, 377-384. http://projecteuclid.org/euclid.dmj/1077315235 1077315235
  4. D. M. Goss and W. M. Sinnott, Class-groups of function fields, Duke Math. J. 52 (1985), no. 2, 507-516. https://doi.org/10.1215/S0012-7094-85-05225-1
  5. H. L. Lee, Power sums of polynomials in a Galois field, Duke Math. J. 10 (1943), 277-292. http://projecteuclid.org/euclid.dmj/1077471940 1077471940
  6. J. Lee and Y. Lee, Infinite families of irregular primes in cyclotomic function fields, J. Number Theory 207 (2020), 1-21. https://doi.org/10.1016/j.jnt.2018.09.008
  7. R. Lidl and H. Niederreiter, Finite Fields, second edition, Encyclopedia of Mathematics and its Applications, 20, Cambridge Univ. Press, Cambridge, 1997.
  8. M. I. Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics, 210, Springer, New York, 2002. https://doi.org/10.1007/978-1-4757-6046-0
  9. H. Stichtenoth, Algebraic Function Fields and Codes, second edition, Graduate Texts in Mathematics, 254, Springer, Berlin, 2009.
  10. D. S. Thakur, Function Field Arithmetic, World Sci. Publishing, Inc., River Edge, NJ, 2004. https://doi.org/10.1142/9789812562388
  11. E. Le Yaouanc, On real quadratic function fields, J. Number Theory 123 (2007), no. 1, 27-34. https://doi.org/10.1016/j.jnt.2006.05.018