• Title/Summary/Keyword: distribution matrix

Search Result 1,212, Processing Time 0.03 seconds

A Statistical Testing of the Consistency Index in Analytic Hierarchy Process (계층적 의사결정론에서 일관성 지수에 대한 통계적 검정)

  • Lee, Jong Chan;Jhun, Myoungshic;Jeong, Hyeong Chul
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.103-114
    • /
    • 2014
  • Significant research has been devoted to the consistency index of the Analytic Hierarchy Process(AHP) from several perspectives. Critics of the consistency index in AHP state that the critical value of consistency index depends on an average of the random index based simulation study using a 9 scale comparison matrix. We found that the distribution of the consistency index followed the skew distribution according to the dimension of the comparison matrix based on a simulation study with a 9 scale comparison matrix. From the simulation study, we suggest a consistency index quantile table to assist the decision-making process in AHP; in addition, we can approximate the distribution of the consistency index to the gamma distribution under the limited assumptions.

Nanodispersion-Strengthened Metallic Materials

  • Weissgaerber, Thomas;Sauer, Christa;Kieback, Bernd
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.441-448
    • /
    • 2002
  • Dispersions of non-soluble ceramic particles in a metallic matrix can enhance the strength and heat resistance of materials. With the advent of mechanical alloying it became possible to put the theoretical concept into practice by incorporating very fine particles in a flirty uniform distribution into often oxidation- and corrosion- resistant metal matrices. e.g. superalloys. The present paper will give an overview about the mechanical alloying technique as a dry, high energy ball milling process for producing composite metal powders with a fine controlled microstructure. The common way is milling of a mixture of metallic and nonmetallic powders (e.g. oxides. carbides, nitrides, borides) in a high energy ball mill. The heavy mechanical deformation during milling causes also fracture of the ceramic particles to be distributed homogeneously by further milling. The mechanisms of the process are described. To obtain a homogeneous distribution of nano-sized dispersoids in a more ductile matrix (e.g. aluminium-or copper based alloys) a reaction milling is suitable. Dispersoid can be formed in a solid state reaction by introducing materials that react with the matrix either during milling or during a subsequent heat treatment. The pre-conditions for obtaining high quality materials, which require a homogeneous distribution of small dis-persoids, are: milling behaviour of the ductile phase (Al, Cu) will be improved by the additives (e.g. graphite), homogeneous introduction of the additives into the granules is possible and the additive reacts with the matrix or an alloying element to form hard particles that are inert with respect to the matrix also at elevated temperatures. The mechanism of the in-situ formation of dispersoids is described using copper-based alloys as an example. A comparison between the in-situ formation of dispersoids (TiC) in the copper matrix and the milling of Cu-TiC mixtures is given with respect to the microstructure and properties, obtained.

Fault Tolerant Control of Magnetic Bearings with Force Invariance

  • Na, Uhn-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.731-742
    • /
    • 2005
  • A magnetic bearing even with multiple coil failure can produce the same decoupled magnetic forces as those before failure if the remaining coil currents are properly redistributed. This fault-tolerant, force invariance control can be achieved with simply replacing the distribution matrix with the appropriate one shortly after coils fail, without modifying feedback control law. The distribution gain matrix that satisfies the necessary constraint conditions of decoupling linearized magnetic forces is determined with the Lagrange Multiplier optimization method.

A NOTE ON THE GEOMETRICAL PROPERTIES OF THE NORMAL DISTRIBUTION

  • Cho, Bong-Sik
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • The Fisher information matrix plays a significant role in statistical inference in connection with estimation and properties of variance of estimators. In this paper, the parameter space of the normal distribution using its Fisher's matrix is defined. The Riemannian curvature and J-divergence to parameter space are calculated.

GEOMETRICAL PROPERTIES OF t-DISTRIBUTION

  • CHO, BONG SIK;BAEK, HOH YOO
    • Honam Mathematical Journal
    • /
    • v.28 no.3
    • /
    • pp.433-438
    • /
    • 2006
  • The Fisher information matrix plays a significant role in statistical inference in connection with estimation and properties of variance of estimators. In this paper, the parameter space of the t-distribution using its Fisher's matrix is defined. The Riemannian and scalar curvatures to parameter space are calculated.

  • PDF

Statistical Analysis of Bending-Strength Data of Ceramic Matrix Composites : Estimation of Weibull Shape Parameter (세라믹 복합체의 굽힘강도 데이터의 통계적분석 : 와이블 형상모수의 추정과 비교를 중심으로)

  • 전영록
    • Journal of Applied Reliability
    • /
    • v.1 no.1
    • /
    • pp.17-33
    • /
    • 2001
  • The characteristics of Weibull distribution are investigated as a function of shape parameter. The statistical estimation methods of the shape parameter and statistical comparison methods of two or more shape parameters are studied. Assuming Weibull distribution, statistical analysis of bending-strength data of alumina titanium carbide ceramic matrix composites machined two different methods are performed.

  • PDF

Lifetime Distribution Model for a k-out-of-n System with Heterogeneous Components via a Structured Markov Chain (구조화 마코프체인을 이용한 이종 구성품을 갖는 k-out-of-n 시스템의 수명분포 모형)

  • Kim, Heungseob
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.332-342
    • /
    • 2017
  • Purpose: In this study, the lifetime distribution of a k-out-of-n system with heterogeneous components is suggested as Markov model, and the time-to-failure (TTF) distribution of each component is considered as phase-type distribution (PHD). Furthermore, based on the model, a redundancy allocation problem with a mix of components (RAPMC) is proposed. Methods: The lifetime distribution model for the system is formulated by the structured Markov chain. From the model, the various information on the system lifetime can be ascertained by the matrix-analytic (or-geometric) method. Conclusion: By the generalization of TTF distribution (PHD) and the consideration of heterogeneous components, the lifetime distribution model can delineate many real systems and be exploited for developing system operation policies such as preventive maintenance, warranty. Moreover, the effectiveness of the proposed RAPMC is verified by numerical experiments. That is, under the equivalent design conditions, it presented a system with higher reliability than RAP without component mixing (RAPCM).

Identifying Spatial Distribution Pattern of Water Quality in Masan Bay Using Spatial Autocorrelation Index and Pearson's r (공간자기상관 지수와 Pearson 상관계수를 이용한 마산만 수질의 공간분포 패턴 규명)

  • Choi, Hyun-Woo;Park, Jae-Moon;Kim, Hyun-Wook;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.391-400
    • /
    • 2007
  • To identify the spatial distribution pattern of water quality in Masan Bay, Pearson's correlation as a common statistic method and Moran's I as a spatial autocorrelation statistics were applied to the hydrological data seasonally collected from Masan Bay for two years ($2004{\sim}2005$). Spatial distribution of salinity, DO and silicate among the hydrological parameters clustered strongly while chlorophyll a distribution displayed a weak clustering. When the similarity matrix of Moran's I was compared with correlation matrix of Pearson's r, only the relationships of temperature vs. salinity, temperature vs. silicate and silicate vs. total inorganic nitrogen showed significant correlation and similarity of spatial clustered pattern. Considering Pearson's correlation and the spatial autocorrelation results, water quality distribution patterns of Masan Bay were conceptually simplified into four types. Based on the simplified types, Moran's I and Pearson's r were compared respectively with spatial distribution maps on salinity and silicate with a strong clustered pattern, and with chlorophyll a having no clustered pattern. According to these test results, spatial distribution of the water quality in Masan Bay could be summed up in four patterns. This summation should be developed as spatial index to be linked with pollutant and ecological indicators for coastal health assessment.

A Novel Fault Location Method for a Line to Line Fault Using Inverse Theorem of Matrix on Electric Power Lines (행렬의 역정리를 이용한 전력공급 선로의 상간단락 사고지점 검출 방법)

  • Lee Duck-su;Choi Myeon-song;Hyun Seung-ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1321-1324
    • /
    • 2004
  • Unbalanced systems, such as distribution systems, have difficulties in fault locations due to single-phase laterals and loads. In this paper, a novel fault location algorithm is suggested for a line to line faults using inverse theorem of matrix on electric power lines. The fault location for balanced systems has been studied using the current distribution factor, by a conventional symmetrical transformation, but that for unbalanced systems has not been investigated due to their high complexity The proposed algorithms overcome the limit of the conventional algorithm using the conventional symmetrical transformation, which requires the balanced system and are applicable to any electric power system but are particularly useful for unbalanced distribution systems. The simulation results oriented by the real distribution system are presented to show its effectiveness and accuracy.

  • PDF

Changes of Distribution Coefficients of Cu, Cr, and As in Different Soil Matrix in a Laboratory Scale

  • Kang, Sung-Mo;Ra, Jong-Bum;Kim, Suk-Kuwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.137-140
    • /
    • 2009
  • Chromated copper arsenate (CCA), a long history of successful preservative, have raised environmental concerns. Adsorption characteristics of domestic soils for chromium, copper, and arsenic were assessed by measuring distribution coefficient ($K_d$) values of these metal components in a laboratory scale. The results revealed that $K_d$ values were higher in chromium, followed by arsenic and copper in soil matrix. Different soil matrixes resulted in varying mobilities of CCA components. The values of $K_d$ for all three metals increased with organic matter contents. The results suggest that the mobility of metal components may be very limited to the surface area adjacent to CCA-treated wood due to their fairly large distribution coefficient ($K_d$). However, the metal components would be persistent and accumulated in the soil, resulting in high chemical concentration in service area of treated wood.