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Fault Tolerant Control of Magnetic Bearings
with Force Invariance

Uhn Joo Na*
Division of Mechanical and Automation Engineering, Kyungnam University,
Masan, Kyungnam 631-701, Korea

A magnetic bearing even with multiple coil failure can produce the same decoupled magnetic

forces as those before failure if the remaining coil currents are properly redistributed. This fauli-

tolerant, force invariance control can be achieved with simply replacing the distribution matrix
with the appropriate one shortly after coils fail, without modifying feedback control law. The
distribution gain matrix that satisfies the necessary constraint conditions of decoupling lin-

earized magnetic forces is determined with the Lagrange Multiplier optimization method.
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Nomenclature
a . Pole face area

bsat . Saturation flux density

. Nominal air gap distance

> Number of active poles

. Number of coil turns

. Path reluctance factor

. Leakage and fringing factor
. Lagrange multiplier

B >aRrR xR

. Permeability of air
trer . Relative permeability
6 . Pole face angle

1. Introduction

A magnetic bearing system is a mechatronics
device consisting of a magnetic force actuator (a
magnetic bearing, or MB), motion sensors, power
amplifiers, and a feedback controller (DSP), that
is used to suspend the spinning rotor magnetically
as well as to suppress vibrations actively. Mag-
netic bearings are filling a greater number of
applications in industry since they have many
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advantages over conventional fluid film or rolling
element bearings, such as lower friction losses,
free of lubrication, operation at temperature ex-
tremes, quiet operation, and high speeds. Mag-
netic suspension produces active damping and
stiffness which arises from the control action, so
system parameters can be designed to avoid re-
sonance or for optimum damping through the
resonances while in operation. The design and
control of magnetic bearings has been investiga-
ted by many researchers {Salm and Schweitzer,
1984, Matsumura and Yoshimoto, 1986, Jeon et
al., 2002, Ahn and Han, 2003).

Highly critical applications of these machinery
elements may demand a fault-tolerant control
strategy. Fault-tolerant control of magnetic bear-
ing system provides continued operation of the
bearing even if its power amplifiers or coils sud-
denly fail. The goal of the present work is to
develop a fault-tolerant control algorithm such
that bearing actuators can preserve the same
magnetic forces even after some components such
as coils or power amplifiers fail. Fault-tolerant
actuators were investigated by several researchers.
Lyons et al. (1994) used a threé control axis radial
bearing structure with control algorithms for re-
dundant force control and rotor position mea-
surement. In this approach, if one of the coils
fails, its entire control axis is shut down, while
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still maintaining control. Maslen and Meeker
(1995) and Meeker (1996) showed that a mag-
netic bearing with multiple coil failure can pro-
duce decoupled control forces if the remaining
coil currents are properly redistributed. The flux
coupling between poles in a heteropolar magnetic
bearing and reassigning of the remaining coil
currents provides a mean to produce desired force
resultants in the x and y directions when some
coils fail. A fault tolerant magnetic bearing sys-
tem was demonstrated by Maslen et al. (1999) on
a large flexible-rotor test rig. Na and Palazzolo
(2000) show that the fault-tolerant control can
be maintained for an 8-pole magnetic bearing
including material path reluctances for up to 5
coils out of 8 failed. The fault-tolerant scheme
utilizing the grouping of currents reduces the
required number of controller outputs and de-
coupling chokes (Na and Palazzolo, 2001). This
fault tolerance may reduce load capacity of the
bearing because the redistribution of currents to
the failed bearing may lead to saturation in the
bearing material.

The present work utilizes the bias voltage lin-
earization to determine the redistribution of the
remaining coil currents such that the same lin-
earized magnetic forces are preserved even after
the magnetic bearing actuator experiences failure.
This represents an advance over previous methods
(Maslen and Meeker, 1995; Na and Palazzolo,
2000) that provide x, y control force decoupling
and linearized control force/control voltage re-
lations, however do not preserve control force/
control voltage gain and ignore position stiffness
alteration with failure.

2. Bearing Model

Magnetic forces are determined from magnetic
flux density and may be reduced by flux leakage,
fringing, saturation of magnetic material, and
eddy current effects. Flux density increases with
magnetomotive force until it reaches a maximum
point (saturation point), and further increase in
currents will result in a very small increase in flux
density. Maximum load of a magnetic bearing is
thereby limited by material saturation. Eddy cur-

Fig. 1 Heteropolar Magnetic Bearing

rents also reduce dynamic forces and can be
reduced by properly laminating the journal and
stator components. If eddy current effects are
negligible, and the flux density is linear with
magnetomotive force, Maxwell’s equations can
be fairly accurately approximated by 1D magne-
tostatic relations. An 8-pole heteropolar radial
magnetic bearing is shown in Figure 1. The flux
density in the air gap may be reduced due to the
leakage and fringing effects which are accounted
for by derating the force with a simple scaling
factor (Allaire, 1989). The flux density vector in
the air gap is described as ;

B=V(x,y)I, (1)
where the current vector is ;
I=[0, tz, -, ig]

A derivation of the current to flux density ma-
trix appears in Appendix A. The magnetic forces
along the ¢ direction are related to current inputs
and rotor displacements as ;

fo=—I"Q¢(x, y) I, p=x or y. (2)
where Qolx,y)= VT%%

D=diag(g(x,y)a/(2m))
and where the air gap is described as ;
gi=go—x cos B;—y sin 6;

The current inputs to each pole are generally
expressed with a linear combination of a bias
voltage vs, and control voltages vex and vey. The
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current vector of an 8-pole magnetic bearing is
defined as ;

I=Tv (3)

where the distribution matrix is T=[T»Tx7y],
and the voltage vector is v=1[0s, Vex, Vey)". The
current distribution of a conventional C-core
based, 8-pole magnetic bearing is realized by
winding 4 coil pairs, one for each group of 2 poles
(a coil pair is wound on two adjacent poles in
series with the opposite polarity). A typical
current distribution matrix of a load-on-pole, 8-
pole magnetic bearing with independent currents
is described as;

oo(57) —sin( )
1 cos(%) sin(i)
S
1 cos(—”)

< 107r) < 107z‘>
—1 —cos|—%— —sin

8

1 COS(IZJ> sm( 12”)
8 8
1471 . [ 14r

| _C°S<T> ‘S‘H<T>q

where the first column, the second column, and
the third column represent the bias vector, x
control vector, and ¥ control vector, respectively.
Note that the currents are distributed to each pole
by imposing a bias voltage and changing control
voltages. With the uniform current distribution
shown in Eq. (4) as well as the symmetric bearing
geometries, magnetic forces are (x, y) decoupled
and vary linearly with respect to control currents
and rotor displacements around the bearing
center position (Bornstein, 1991 ; Lee and Kim,
1992).

If some coils fail, the full (8 X 1) current vector
is related to the reduced current vector by intro-
ducing a failure map matrix H.

I=HI, (5)

For example, if the 4-5-7" coils fail, the current
vector is described as ;

(il T1 0 0 0 0
12 OIOOOZ':
i3001001¢;
ol [0 0 00 of|% .
=61%l0 0 0 o ol |2TH
sl o oo 1 of %
ol o 0o 0o 0o ofL"
lis] 100 0 0 1]

If symmetry is lost due to coil failure, magnetic
forces are no longer decoupled and linear with
respect to control currents and rotor displace-
ments. If one or more of the 8 coils with the
distribution matrix 7 fail, the magnetic forces
will be coupled and asymmetric. It may be diffi-
cult to maintain control if severe asymmetry is
present due to multiple coil failures. Reassigning
the remaining currents with a redifined current
distribution scheme utilizing the flux coupling
property of a heteropolar magnetic bearing may
remedy this by providing the same decoupled
magnetic forces as before failure. The reduced
current vector is expressed as;

I=Tv (6)

where the reduced distribution matrix is defined
as;

T=[T7.7:T,], (7)
where

To=[t, tas .., ta)7,

Tx=[tos1, tarz, s tra)

Ty=1trgs1, trgsz, .., tsa)”

The optimal T should be determined in a manner
such that the magnetic forces remain invariant
before and after failure. The Lagrange Multiplier
optimization with equality constraints is used to
determined the optimal T. The remaining cur-
rents redistributed by the optimal T=HT pro-
vide the same magnetic forces before and after
failure, which means that the dynamics of the
rotor is not disturbed by coil failure. The distri-
bution matrix 7 can be implemented in DSP
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controller as a part of a control law so that the
effects of a coil failure can be very much mitigated
with control action. The magnetic forces are con-
trolled with a combination of 8 currents one for
each pole in normal operation. However, the mini-
mum number of independent currents required
for generating arbitrary magnetic forces is three
(Meeker, 1996). This describes the basic fault to-
lerance action, i.e. if some coils fail, the remaining
coils must provide the magnetomotive forces to
generate the desired magnetic forces.

3. Linearization of Magnetic Forces

The general magnetic forces including a distri-
bution gain matrix and the control voltage vector
are described as;

f¢=UTM¢Z) (8)
where
M«p:_TTHTQw(x, y>HT (9)

The magnetic forces are quadratically dependent
on the voltage vector v. The bias voltage vp is
adjusted in a manner that maximizes the load
capacity of the magnetic bearing. The magnetic
forces in Eq. (8) are linearized about the bearing
center position and about the bias voltage v, (Na
and Palazzolo, 2000). The linearized magnetic
forces are then ;

fx _ koxx oy || % ko Roxy || Vex
,:fyj'_ [kpyx kpyyjl[y] +[kvyx kvyy]{vcy:l (10)
or

F=—Kyz+Kyve (11)

The position related force coefficients (position
stiffnesses) are calculated as

kpwwz — gj;) = Terwo Tbvbza (12)
where
00| _ 10D oVT
Qruo= Ga)w 5;%_2 v dp dw 159 (13)

and the voltage related force coefficients (voltage
stiffnesses) are ;

Rvew= aag:) =—2 TbTQq:o Tovs, (14)

where

where the parameters ¢ and @ both represent x or
y direction. For example, the linearized magnetic
forces with the distribution matrix 7 for an
unfailed bearing are ;

Fo=—kop+ kv ' (15)
where

ko=—To" Qewo Tsvs%, (16)

ky=—2T5" Qoo Ts, (17)

The linearized magnetic forces for an unfailed
bearing are completely decoupled as shown in Eq.
(15). However, if some coils in the bearing fail
with the current distribution scheme of 7, the
linearized forces in Eq. (10) may become full
matrices, and may be strongly asymmetric.

4. Fault Tolerance of Magnetic Forces

4.1 Decoupling of control dependent
magnetic forces

Employing an optimal current distribution T
may decouple the linearized forces, and even
maintain the same decoupled magnetic forces as
those of an unfailed magnetic bearing. Maslen
and Meeker (1995) introduced a linearization
method which effectively decouple the control
forces for a failed bearing by choosing a proper
distribution matrix. Though not identified in
(Maslen and Meeker, 1995), the necessary con-
ditions to yield the same decoupled control forces
as those of the unfailed bearing are ;

[4 L [ 1
0 5 0 00 5
No=Fe] m="200 o ol (18)
*vb700’y0b1
0 0 0 7 00

If M, in Eq. (9) are determined such that Eq.
(18) should be satisfied, the off-diagonal voltage
terms in Eq. (8) can then be effectively elimina-
ted. The magnetic forces f, at the bearing center
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position then become ;

f¢=—' kac¢ ( 19)

Substituting 7 in Eq. (9) for the normal opera-
tion leads to Eq. (18). If the distribution matrix
T is determined in case of a coil failure such
that M, should be invariant as Eq. (18) through
coil failures, the magnetic forces are then only
dependent on the control voltage vector . If M, in
Eq. (9) is equal to the condition in Eq. (18), the
magnetic forces can be linearized to Eq. (19) even
in case of coil failure. Eq. (9) and Eq. (18
be written in 18 scalar forms, and then boils down
to 12 algebraic equations if redundant terms are

) can

eliminated. The equality constraints to yield the
same control forces before and after failure are ;

hl ( T) = beHTQxOHi‘bZO
hs ( T) = beHTQyonb=0
ha(T) = f‘bTHTQxOHYA‘y:O

h( T) =T5"H*QuHT~=0
hs(T) =T TH QuHT==0
o( 1) =T, H"QuHTy=0 (20)

h( D) =T\"H™QuHT-=0

k(T =TV H'QuHT,=

he(T) =Ty HQuH Tx=0

hio(T) = T-"HT QuHTy=0

n( 1) =TT HT QuoH T —f2—0

Do (1) = T HT QuH T~ k” ——0

4.2 Decoupling of position dependent
magnetic forces

The conditions for decoupling control voltage
related forces are necessary for the fault-tolerant
control but may not be sufficient since position
dependent forces may still become (x, v) coupled
and asymmetric, potentially leading to perform-
ance and stability degradation. Asymmetric clos-
ed loop stiffnesses may create elliptic orbits or
force orbits offcenter. Some cross coupled posi-
tion stiffnesses also act like negative dampings,

and may reduce the stability margin of the closed
loop system. The position related forces in Eq.
(11) can be decoupled if the distribution matrix is
adjusted in a manner that the cross-coupled po-
sition stiffness terms should be equal to zero. The
conditions for eliminating the off-diagonal cross
coupled position stiffnesses are ;

hl3( T) =
h14( T) =

f‘bTH TQuH Tb =0

PO ~ (21)
Ty H QuuoHT»=0

The conditions for the direct position stiffnesses
to have the same values as those of an unfailed
bearing are ;

ko
2

b

hls ( T) = beHTQxxOHf‘b - =O
(22)

s ( T) = TbTHTnyonb “"EP?ZO

Vs

It is notable that the position dependent forces
are only influenced by the bias components of
the distribution matrix. If there exists a distribut-
ion matrix that satisfies the conditions described
in Eqs. (20)-(22), the same linearized magnetic
forces will be generated before and after failure.
Previous approaches to the fault tolerance prob-
lem did not address position stiffness changes and
asymmetry, nor voltage stiffness value changes
after failure (Maslen and Meeker, 1995, Meeker,
1996) .

5. Optimization

There may exist multiple candidates of T"s that
satisfy the decoupling conditions. The criterion
for choosing the best candidate is the one that
will yield the maximum load capacity prior to
any saturation. To accomplish this a distribution
matrix T can be determined by using the La-
grange Multiplier method to minimize the Eu-
clidean norm of the flux density vector B (Na
and Palazzolo, 2000) . The cost function is defined
as;

J=B(T)"PB(T) (23)

where the diagonal weighting matrix P is also
selected to maximize the load capacity.
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The Lagrange Multiplier method is then used
to solve for the T that satisfies Eq. (23). Define :

- ~ 16
L(T)y=B(T)'PB(T) + X 4h(T)  (24)
£
Partial differentiation of Eq. (25) with respect to
t; and A; leads to 3¢+16 nonlinear algebraic
equations to solve for #; and A,.

wl(ts /l)
wz(t, /l)
W= : %0, (25)
W3q+15(f, /U
Wags16(f, A)
where
oL _ ._
W= ot =0, :1=1,2,.., 3¢
W(j+3q)=hj< T) =0, Z.-_—‘l, 2, s 16

The system of nonlinear algebraic equations
shown in Egs. (25) can be solved for the distri-
bution matrix 7 (#) (Na and Palazzolo, 2000). A
least square iterative method was used to solve the
system of nonlinear algebraic equations, which
yields multiple solutions (local optima). Various
initial guesses were tested until they converged to
the solution within tolerable errors. The 8-pole
heteropolar magnetic bearing used in this analy-
sis has g(0.0005m), (0.0005236m?), #(60). The
calculated distribution matrix for the 7-8 coils
failed bearing is ;

(23295  1.8011 —1.7642]

09996 —0.0024 —3.9096

3.0955 0 —2.7502

09996 00024 —3.9096

Tow=| 53205 —18011 —1.7642 27)

0 0 0
0 0 0

L 0 0 G |

Equation (18) is satisfied with the calculated Tyrs
as shown in ’

[ 19972 14996 —0.6189]
20066 12148 —0.4977
0.0094 07144 —1.9482
—0.0093 07144 —1.9482
T5=| |993a —o7850 —13204| 20
20027 —0.5004 —1.4505
0 0 0
L o 0 o |

Equation (18) is satisfied with the calculated T
as shown in

0 19.3985 0 0 0 19.3985
Mx=119.3985 0 0|, M= ¢ 0 0
0 0 0 19.3985 0 0

and the calculated distribution matrix for the 6-
7-8" coils failed bearing is ;

0 19.3985 0 0 0 193985
M={193985 0 0|, M= 0 0 -0
0 0 0 193985 0 0
and the 2-4-7-8" coils failed bearing is ;
[ 20349 42171 —1.3317]
0 0 0 .
1.9361  0.0221 17773
0 0 0
= 2
L= _ 4 6927 —42573 23976 (28)
—~1.7853 —0.1133  1.8531
0 0 0
) 0 0

Equation (18) is satisfied with the calculated
Ts475 as shown in

[ —0.3983  19.1959 —0.5401
Me=| 19.1959  —0.3316 —1.7689}
| —0.54301 —1.7689 —2.3590
[ 14598 —03243 18.5044
My=| —0.3243 —0.0254 0.6567}
| 18.5044  0.6567  0.8839

It is interesting to note that the linearized forces
in Egs. (10) and (11) result in the same position
and voltage stiffnesses when any of the distribu-
tion matrices for different failure cases in Egs.
(26)-(27) is used. However, the distribution ma-
trix for the 4 coils failed case such as Eq. (28) has
off-diagonal error terms in M. It may be difficult
to find the exact solution for the hard failure such
as 4 or more coils failed bearings because of the
geometric limitation. However, the optimization
algorithm try to find the approximate solution that
nearly satisfy the 16 constraints with some error
residuals remained.
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Table 1 The calculated linearized forces

T T78 7‘78 T678 71678 T2478 7‘2478
Bpex (N/m) 912880 929030 912860 946470 912930 681510 919840
boxy(N/m) 0 36795 -6.2 -5772 0 141500 72692
By (N/m) 0 36795 -6.2 -5772 0 141500 72692
Eoyy (N/m) 912880 398600 912860 192280 912900 931810 835960
Poxx (N/volt) 133.07 133.07 133.07 133.07 133.08 132.95 131.688

kvxy (N/volt) 0 0 0 0 0 -0.23 -3.7

Foyx (N/volt) 0 0 0 0 0 ~0.03 =22
By (N/volt) 133.07 133.07 133.07 133.07 133.08 132.54 126.94

The main difference of the fault tolerant ap-
proach presented in this paper over the previous
approaches is that the position stiffness con-
straints in Eqs. (21) and (22) are added in this
paper. If there exist solutions for any failed bear-
ing, the same position and voltage stiffnesses as
those of the unfailed bearing can be maintained.
Notable is the fact that these results are achieved
without modifying the feedback control law after
failure, nor requiring any type of control law.
This clearly is a distinct advantage over previous
other fault tolerant approaches. Previous fault
tolerant approaches utilize only control force
constraints in Eq. (20). Distribution matrices are
calculated using only control force constraints in
Eq. (20). The calculated distribution matrix for
the 7-8" eoils failed bearing is;

[ 1.8703
—0.2767
0.6040
- 1.7978
Tw=| 48807
—0.7717
0
0

1.6025
—0.2371
0.5175
—0.6612
0.7545
1.5404
0
0

—2.02547]

—2.9881
—1.9344
—0.1415
—2.7072
—0.1415
0
0

and the calculated distribution matrix for the 6-

7-8"" coils failed bearing is ;

[ 1.8316
0.0427
—0.0182
—0.0143
1.8187
0
0
0

Te=

1.4716
0.0387
0.0012
—0.0358
—1.4702
0
0
0

—1.7612]

—3.87
—3.2988
—3.8715
—1.8214

0
0
0

and the calculated distribution matrix for the 2-
4-7-8" coils failed bearing is :

[1.7936 3.6522 —1.7268]
0 0 0
2.0471 14531 1.1691
- 0 0 0
Ten=| 04934 39197 —1.4199 (31)
2.1833 1.1875 —2.3468
0 0 0
L o 0 0 |

The position stiffnesses in Eq. (12) and the
voltage stiffnesses in Eq. (14) are evaluated for
the distribution matrices of 7', Trs, Ters, Taare,
Tm, Tm, T247s, and v, of 3.43, and are shown
in Table 1. Table 1 shows that the position
stiffnesses as well as the voltage stiffnesses using
Ts, Ters, Touzs for failed bearing are almost the
same as those using T for the unfailed bearing.
The voltage stiffnesses using T7g, Tm, Tws are
the same as those of the unfailed bearing while
the position stiffnesses using Tn, TG73, sz are
different from those of the unfailed bearing, since
no constraints are used for the position stiffnesses.

The 3~D finite element model is constructed for
a heteropolar magnetic bearing by using a com-
mercial magnetic field software (OPERA3D).
The designed bearing properties are (0.0005 m),
(0.0005236 m?), and #(60). Two current sets, [, =
Tv and L= Toumv, with v=[3.43 2cos(Q¢)
2sin(Q#)]" and t=n/(6Q), are applied on the
3-D finite element model such that magnetic
bearing flux distribution and the corresponding
magnetic forces for the normal operation with T
should be compared with those of the fault to-
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lerant operation with T4s. Flux distribution in
the bearing stator driven by [, and L, are shown
in Fig. 2. It is notable that fluxes still flow
through the failed poles (2%¢, 4™, 7™ and 8
poles) due to flux coupling when I is applied.
This flux coupling in the failed bearing and opti-
mal current distribution make possible to gener-
ate the same net magnetic forces as those of the
unfailed bearing. The magnetic forces driven with
I, and L are also calculated using OPERA3D.
The calculated magnetic forces shown in Table 2
indicate that the optimally distributed currents for
the 2-4-7-8" coils failed bearing produce very

Table 2 Magnetic Forces Calculated with [; and [

A L
F<(N) 295.12 305.18
f(N) 166.94 184.22

(b) Flux Distribution with &
(Fault Tolerant Operation)

Fig. 2 Fault Tolerant Flux Operation

much the same magnetic forces as those of the
unfailed bearing.

6. Control System Design and Simulations

The feedback voltage control law can be de-
signed excluding all fault tolerance considera-
tions since the actuator’s force-voltage and force-
displacement characteristics are unaltered by the
failure. A feedback control law used to stabilize
the system is defined as;

ve=g (2, 2) (32)

Note that any of the array of control algorithms
(linear or nonlinear) for magnetic bearing sys-
tems appearing in the literature can be utilized
with the fault tolerant scheme. The total current
vector for the fault-tolerant magnetic bearing
actuator is;

I=I,+1 (33)

where the redefined bias current is;

Iy=Tyve, (34>
and the redefined control current vector is;
Ic'_— [ TxTy:] Ve= TcUc (35)

For sake of illustration in this example, the clos-

-ed loop bearing stiffness and damping may be

adjusted by tuning the PD control gains (Keith,
1990). The fault-tolerant control scheme with
the PD control law is illustrated in Fig. 3. The
schematic of the rotor-bearing system is shown
in Fig. 4. The T’s can be calculated and stored
in the database for all possible combinations of
failure. Coil or power amplifier failure can be
detected with the current sensors installed on all
coils. If the failure status vector is determined

Searching
Algorithm
()~

—- f
Feedback | "o T w” Povt'er I_\I } AMB v_.l R°t°’_
Law > Amplifiers Dynamics
Sensor L
Dynamics

Fig. 3 Fault Tolerant Control Scheme

Detection j
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failure. Coil or power amplifier failure can be
detected with the current sensors installed on all
coils. If the failure status vector is determined
from measurements, the corresponding 7T will
be searched from the data base and replace the
existing 7.

The following system dynamics simulation
illustrates the transient response of a rotor sup-
ported by magnetic bearings during a coil failure
event. The horizontal, rigid rotor model has a
mass of 12kg, Polar moment of inertia of 0.05 kg
m?, transverse moment of inertia of 0.36 kg m?,
and bearing locations of 0.22 m on each side of
the mass center. Unbalances of eccentricity 1.0e-5
m are applied on two bearing locations with a
relative phase angle of 90°. The rotor speed is
held constant at 10,000 RPM. It is notable that
although the algorithm presented preserves the
linearized forces before and after coil failure,
the simulation model employs nonlinear bearing

t

K
N

A

Fig. 4 Schematic of Rotor-Bearing System

T

4 x10° X displacement
T t

|

o
n

€
D
8
B
3

05/ ¥ A

; : , . :
a i L N i i <
o .05 0.1 015 02 025 03 035 04
timie(sec)

Fig. 5 The displacements at Bearing A (the 7-8™
coils failed at 0.1sec, and the 6-7-8" coils
failed at 0.2 sec)

forces as a more stringent test. PD control gains
of Kp and K, are designed to be 15 and 0.05
respectively. Displacement sensor and power am-
plifier gains are 7874 Volt/m and 1 Ampere/volt
respectively. Figure 5 shows transient response
displacement plots at Bearing A from the normal
unfailed operation through coil failures (the 7-8
coils failed at 0.1 sec., and the 6-7-8'" coils failed
at 0.2 sec., and the 2-4-7-8" coils failed at 0.3

10°
J X

T T T —r i T T T

= o o o
[N P o bl
y =
s "

displacermnt(m)
°
T

&
&2

04

46

08k

A4 ) L s . 2 L i i L

4 48 48 04 .02 [ 62 04 08 03 1
displacemiim) x10°

Fig. 6 The Orbits at Bearing A (the 7-8 coils failed
at O.1sec, and the 6-7-8" coils failed at
0.2sec)

Curent inped 4

3

e

c‘urvem {Ampere)
o B

of oL o

curent (Ampere}
o

4 0 a2 04 o 02 0.4
timefsecs time(sec)

0.2
time(sec)

Fig. 7 Currents Through Bearing A (the 7-8' coils
failed at 0.1sec, and the 6-7-8" coils failed at
0.2 sec)
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Fig. 8 Flux Densities at Bearing A (the 7-8"™ coils
failed at 0.1sec, and the 6-7-8" coils failed at

0.2 sec)

sec.). An orbit plot at Bearing A through the
failure sequence is shown in Figure 6. Transient
response of the current inputs to bearing A is
shown in Figure 7 and transient response of the
flux densities in Bearing A is shown in Figure 8.
Orbits are slightly disturbed after the 2-4-7-8%
coils fail at 0.3 seconds, since the asymmetric and
coupled position stiffnesses caused by 724 do not
provide the same closed loop dynamics as those of
the unfailed bearing.

7. Conclusions

A current distribution gain matrix, T is deter-
mined so that the magnetic bearing actuator will
preserve the same total linearized magnetic forces
even after some components such as coils or
power amplifiers experience failure. The present
fault tolerant method provides complete deco-
upling of control dependent forces (voltage stiff-
nesses) as well as position dependent forces {po-
sition stiffnesses). This is a clear advance over
previous methods. Fault tolerant simulations
show that orbits after failure can be maintained
very close to the orbit before failure even if the
control gains are left unchanged after failure.
Relatively large increase in currents and flux
densities may be required to maintain the same
closed loop dynamic properties after failure, de-

pending on the nature of the disturbances. There-
fore, disturbance levels from imbalance, runout or
sideloads should be maintained at low levels to
prevent saturation.
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Appendix A
Ampere’s loop law, Gauss’s law, and conserva-

tion of fluxes in the magnetic circuit provides the
flux-current relation.

R®=NI (A1)
The flux density vector for the air gaps is;
B=V(x, 91, (A2)
where
v=C28" R (A3)
Lo

Reluctances in the magnetic bearing can be parti-
tioned into a gap reluctance matrix and a material

path reluctance matrix.
R=Ns+Nn (A4)

The non-dimensional gap reluctance matrix is ;

60 =, 0 0 0o 0 0 2]
0 & -& 0 0 0 0 0
0 0 & —£ 0 0 0 0
0 0 0 & -& 0 0 0
%o 0 0 0 g -& o oA
00 0 0 0 g -8 0
0 0 0 0 0 0 g g
/L TS E ES R S B

where the non-dimensional air gap equations
are ;
g;=1—Z% cos 6;—~ 3 cos b; (A6)
where
Z=x/go and J=y/go

The non-dimensional material path reluctance
matrix is defined as;



Fault Tolerant Control of Magnetic Bearings with Force Invariance 741
(.1 _,_67 59 4y 37 2y _7 1
Ity 1773 8 3 8 8 8 0
i 27 _Sp. _4yp  _39 _2n _1
s T3 =% 8 8 8 8 0
A 27 3 _,_4n  _31 _27 _1
8 8 1+ =% 8 8 0
A 2y 37 /R 1 2y _n
No=t—| B g g Ty 7Ty g 8 0 (A7)
el gy 3 4 5 2 3
3 8 Kl 8 L e e T
7 27 37 47 R 67 __1
8 8 8 8 g 43 -5 0
7 27 3 47 57 67 17 _
8 8 8 8 8 8 I+ !
L 0 0 0 0 0 0 0 0 |
p= orks+ psk; (A8) Jeon, S., Ahn, H. and Han, D., 2002, “Model

©B0;

where the areas of the poles, the back iron, and
the journal iron are expressed in terms of the pole
face areca as Ap=A, As=psA, and A;=p;A.
The length of the pole legs and the length of the
back iron and of the journal between the two
poles is given in terms of the nominal gap dis-
tance as lp=~Fkgo, ls=kksgo, [;=Fkk;go. The coil
turn matrix is;

1 -1 0 .0
0 1 —1 0 .
0 O 1 —1 0 .
N= (A9)

. 0
0 0 0 I —1

0 0 ) 0 0 |
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