• 제목/요약/키워드: distance-preserving mapping

검색결과 9건 처리시간 0.022초

GENERALIZATIONS OF ALESANDROV PROBLEM AND MAZUR-ULAM THEOREM FOR TWO-ISOMETRIES AND TWO-EXPANSIVE MAPPINGS

  • Khodaei, Hamid;Mohammadi, Abdulqader
    • 대한수학회논문집
    • /
    • 제34권3호
    • /
    • pp.771-782
    • /
    • 2019
  • We show that mappings preserving unit distance are close to two-isometries. We also prove that a mapping f is a linear isometry up to translation when f is a two-expansive surjective mapping preserving unit distance. Then we apply these results to consider two-isometries between normed spaces, strictly convex normed spaces and unital $C^*$-algebras. Finally, we propose some remarks and problems about generalized two-isometries on Banach spaces.

DISTANCE-PRESERVING MAPPINGS ON RESTRICTED DOMAINS

  • Jung, Soon-Mo;Lee, Ki-Suk
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권3호
    • /
    • pp.193-198
    • /
    • 2003
  • Let X and Y be n-dimensional Euclidean spaces with $n\;{\geq}\;3$. In this paper, we generalize a classical theorem of Bookman and Quarles by proving that if a mapping, from a half space of X into Y, preserves a distance $\rho$, then the restriction of f to a subset of the half space is an isometry.

  • PDF

ON DISTANCE-PRESERVING MAPPINGS

  • Jung, Soon-Mo;M.Rassias, Themistocles
    • 대한수학회지
    • /
    • 제41권4호
    • /
    • pp.667-680
    • /
    • 2004
  • We generalize a theorem of W. Benz by proving the following result: Let $H_{\theta}$ be a half space of a real Hilbert space with dimension $\geq$ 3 and let Y be a real normed space which is strictly convex. If a distance $\rho$ > 0 is contractive and another distance N$\rho$ (N $\geq$ 2) is extensive by a mapping f : $H_{\theta}$ \longrightarrow Y, then the restriction f│$_{\theta}$ $H_{+}$$\rho$/2// is an isometry, where $H_{\theta}$$\rho$/2/ is also a half space which is a proper subset of $H_{\theta}$. Applying the above result, we also generalize a classical theorem of Beckman and Quarles.

2D-MELPP: A two dimensional matrix exponential based extension of locality preserving projections for dimensional reduction

  • Xiong, Zixun;Wan, Minghua;Xue, Rui;Yang, Guowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.2991-3007
    • /
    • 2022
  • Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.

A NEW STUDY IN EUCLID'S METRIC SPACE CONTRACTION MAPPING AND PYTHAGOREAN RIGHT TRIANGLE RELATIONSHIP

  • SAEED A.A. AL-SALEHI;MOHAMMED M.A. TALEB;V.C. BORKAR
    • Journal of applied mathematics & informatics
    • /
    • 제42권2호
    • /
    • pp.433-444
    • /
    • 2024
  • Our study explores the connection between the Pythagorean theorem and the Fixed-point theorem in metric spaces. Both of which center around the concepts of distance transformations and point relationships. The Pythagorean theorem deals with right triangles in Euclidean space, emphasizing distances between points. In contrast, fixed-point theorems pertain to the points that remain unchanged under specific transformations thereby preserving distances. The article delves into the intrinsic correlation between these concepts and presents a novel study in Euclidean metric spaces, examining the relationship between contraction mapping and Pythagorean Right Triangles. Practical applications are also discussed particularly in the context of image compression. Here, the integration of the Pythagorean right triangle paradigm with contraction mappings results in efficient data representation and the preservation of visual data relation-ships. This illustrates the practical utility of seemingly abstract theories in addressing real-world challenges.

Nonbinary Convolutional Codes and Modified M-FSK Detectors for Power-Line Communications Channel

  • Ouahada, Khmaies
    • Journal of Communications and Networks
    • /
    • 제16권3호
    • /
    • pp.270-279
    • /
    • 2014
  • The Viterbi decoding algorithm, which provides maximum - likelihood decoding, is currently considered the most widely used technique for the decoding of codes having a state description, including the class of linear error-correcting convolutional codes. Two classes of nonbinary convolutional codes are presented. Distance preserving mapping convolutional codes and M-ary convolutional codes are designed, respectively, from the distance-preserving mappings technique and the implementation of the conventional convolutional codes in Galois fields of order higher than two. We also investigated the performance of these codes when combined with a multiple frequency-shift keying (M-FSK) modulation scheme to correct narrowband interference (NBI) in power-line communications channel. Themodification of certain detectors of the M-FSK demodulator to refine the selection and the detection at the decoder is also presented. M-FSK detectors used in our simulations are discussed, and their chosen values are justified. Interesting and promising obtained results have shown a very strong link between the designed codes and the selected detector for M-FSK modulation. An important improvement in gain for certain values of the modified detectors was also observed. The paper also shows that the newly designed codes outperform the conventional convolutional codes in a NBI environment.

CUDA 및 분할-정복 기반의 효율적인 다차원 척도법 (An Efficient Multidimensional Scaling Method based on CUDA and Divide-and-Conquer)

  • 박성인;황규백
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권4호
    • /
    • pp.427-431
    • /
    • 2010
  • 다차원 척도법(multidimensional scaling)은 고차원의 데이터를 낮은 차원의 공간에 매핑(mapping)하여 데이터 간의 유사성을 표현하는 방법이다. 이는 주로 자질 선정 및 데이터를 시각화하는 데 이용된다. 그러한 다차원 척도법 중, 전통 다차원 척도법(classical multidimensional scaling)은 긴 수행 시간과 큰 공간을 필요로 하기 때문에 객체의 수가 많은 경우에 대해 적용하기 어렵다. 이는 유클리드 거리(Euclidean distance)에 기반한 $n{\times}n$ 상이도 행렬(dissimilarity matrix)에 대해 고유쌍 문제(eigenpair problem)를 풀어야 하기 때문이다(단, n은 객체의 개수). 따라서, n이 커질수록 수행 시간이 길어지며, 메모리 사용량 증가로 인해 적용할 수 있는 데이터 크기에 한계가 있다. 본 논문에서는 이러한 문제를 완화하기 위해 GPGPU 기술 중 하나인 CUDA와 분할-정복(divide-and-conquer)기법을 활용한 효율적인 다차원 척도법을 제안하며, 다양한 실험을 통해 제안하는 기법이 객체의 개수가 많은 경우에 매우 효율적일 수 있음을 보인다.

GIS를 이용한 산림성 조류의 서식지 예측 모형 및 지도구축 (A Prediction Model and Mapping for Forest-Dwelling Birds Habitat Using GIS)

  • 이슬기;정성관;박경훈;김경태;이우성
    • 한국지리정보학회지
    • /
    • 제13권1호
    • /
    • pp.62-73
    • /
    • 2010
  • 조류는 복잡한 생태계의 상태를 평가하는 대표적인 생물 지표종으로써, 서식지 관리를 통한 효율적인 보전이 필요하다. 이에 본 연구는 창원시를 대상으로 산림성 조류의 서식지에 영향을 미치는 서식지 변수를 GIS기법으로 추출하여 서식지 예측 모형을 제시함으로써 향후 서식지 보존을 위한 유용한 기초자료를 제공하고자 하였다. 연구결과, 135지점에 출현한 산림성 조류는 총 5목 15과 26종 922개체로 나타났다. 또한 산림성 조류의 종다양도를 종속변수, 서식지 변수들을 독립변수로 하여 서식지 예측모형을 구축한 결과, '식생지수', '계곡으로부터의 거리', '혼효림으로부터의 거리', '밭 면적' 등 4개의 변수가 유의성을 가지는 것으로 분석되었으며, 이들의 설명력은 51.3%로 나타났다. 다음으로 모형의 정확도를 검증한 결과, 상관계수 0.735, 절대평균오차비율(MAPE) 20.7%로 비교적 합리적인 예측으로 판단되었으며, 구축된 모형을 활용하여 서식지 예측지도를 제작하였다. 이 지도는 현장조사를 근거로 조사되지 않은 지역의 종다양도를 예측 할 수 있어 향후 서식지 보존을 위한 전략수립에 유용한 기초자료로 활용 가능하리라 판단된다.