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DISTANCE-PRESERVING MAPPINGS ON RESTRICTED
DOMAINS

SooN-Mo Jung AND Ki1-Suk LEE

ABSTRACT. Let X and Y be n-dimensional Euclidean spaces with n > 3. In this
paper, we generalize a classical theorem of Beckman and Quarles by proving that if
a mapping, from a half space of X into Y, preserves a distance p, then the restriction
of f to a subset of the half space is an isometry.

1. INTRODUCTION

Let X and Y be normed spaces. A mapping f : X — Y is called an isometry (or
a congruence) if f satisfies

I1f(z) = fF@)Il = llz -yl

for all z,y € X. A distance p > 0 is said to be contractive (or non-expanding) by
f: X =Y if |z — yl|| = p always implies || f(z) ~ f(y)|| < p. Similarly, a distance p
is said to be extensive (or non-shrinking) by f if the inequality || f(z) — f(y)|| > p is
true for all z,y € X with ||z — y|| = p. We say that p is conservative (or preserved)
by f if p is contractive and extensive by f simultaneously.

If f is an isometry, then every distance p > 0 is conservative by f, and conversely.
At this point, we can raise a question:

Is a mapping that preserves certain distances an isometry?

In 1970, Aleksandrov [1] had raised a question whether a mapping f : X —
X preserving a distance p > 0 is an isometry, which is now known to us as the
Aleksandrov problem. Without loss of generality, we may assume p =1 when X is
a normed space (see Rassias [16]).
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Indeed, earlier than Aleksandrov [1], Beckman & Quarles [2] solved, in 1953, the
Aleksandrov problem for finite-dimensional real Euclidean spaces X = E™:

Theorem of Beckman and Quarles. If a mapping f : E® — E" (2 < n < o)
preserves distance 1, then f is a linear isometry up to translation.

For n = 1, they suggested the mapping f : E! — E' defined by

f(:v)={x+1 for z € Z,

T otherwise

as an example for a non-isometric mapping that preserves distance 1. For X = E*,
Beckman and Quarles also presented an example for a unit distance preserving
mapping that is not an isometry (cf. Rassias [13]).

We may find a number of papers on a variety of subjects in the Aleksandrov
problem (see (3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and also the
references cited therein).

Let X and Y be n-dimensional Euclidean spaces with n > 3. In this paper, we
generalize a classical theorem of Beckman and Quarles by proving that if a mapping,
from a half space of X into Y, preserves a distance p, then the restriction of f to a
subset of the half space is an isometry.

2. PRELIMINARY LEMMAS AND MAIN THEOREM

Throughout this section, let X and Y denote n~dimensional Euclidean spaces,
where n > 3 is a fixed integer, for which there exists a unit vector w € X and a
subspace X of X such that X = X, @ Sp(w) and X is orthogonal to Sp(w), where
Sp(w) is the subspace of X which is spanned by w.

Let us define

ro=0, ri=0+p, r2=0+p+p, r3=0+(1+1/n)p+p1,

where 6 is a real number, p is a positive real number and p; = \/m p. Using
these r;’s we define
Er={z+  : z€ Xs; A>ri}
for k=0,1,2,3. We remark that E3 C E; C E; C Ey C X.
The author, jointly with Rassias, proved a theorem which ensures the validity of
the following theorem (see Jung & Rassias [10]). Let us denote by z, and ys the

X-components of £ and y of X.
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Theorem of Jung and Rassias. Given an integer N > 2, if p is contractive and
Np is extensive by a mapping f : Ey — Y, then f|g, is an isometry. In particular,
if any points  and y of E, satisfy xs # ys, then || f(z) — fW)|| = |z — y||-

Let E be a subset of an n-dimensional Euclidean space X. Following W. Benz,
we will call a set of n distinct points of E a (-set in E if the points are pairwise of
distance # > 0. Suppose that o and 3 are positive real numbers with

(e, B) = 4a® —26°(1 ~1/n) > 0

and suppose that P is a (-set in E. The a-associated points of P are the uniquely
determined two distinct points of X, which have distance « from each point of P,
and the distance between a-associated points is v/v(«, 3) (¢f. Benz [4]).

Lemma 1. If a mapping f : Fg — Y preserves the distance p, then the distance
p1 = /7(p, p) is preserved by f|g,.

Proof. Assume that x and y are points of E; satisfying ||z — y|| = p1. According to
3) in Benz [4, §2] and the definition of Ej, there exists a p-set P in Ep such that
z and y are the p-associated points of P. Since f preserves p, P’ = f(P) is also a
p-set in Y.

Due to 2) in Benz [4, §2], there are exactly two distinct p-associated points z’
and ¢’ of P’ and they satisfy ||z’ — y/|| = v/7(p, p) = p1. Since there exist only two
p-associated points of P’, we have {f(z), f(y)} C {z/,¥'}, i. e, [[f(z) — f(y)]| =0 or
-

Assume that f(z) = f(y). Choose a z € Ey with ||z — z|| = p; and |ly — z|| = p.
In view of 3) in Benz [4, §2], there exists a p-set Q in Ey such that z and z are the
p-associated points of @) (Because z € F; and ||z —¢q]] = p foreach ¢ € Q, Q is a
subset of Ey). Similarly, @' = f(Q) isa p-set in Y.

Due to 2) in Benz [4, §2], there exist exactly two distinct p-associated points z”
and 2" of @' which satisfy

2" = 2"l = \/v(p, p) = 1.
Hence, {f(x), f(2)} C {z",2"}, i.e., |f(z) - f(2)| = 0or py, i e, | F(y) = f(2)| = O
or p; because we assumed f(z) = f(y).

On the other hand, we get p = ||y — 2| = |f(y) — f(2)l| = 0 or p;, which is a
contradiction. Altogether, we conclude that || f(z) — f(y))l = ;- O
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Lemma 2. If a mapping f : Ey — Y preserves the distance p, then the distance

p2 = v/v(p1,p1) = (n+ 1)(2p/n) is preserved by flE,-

Proof. Assume that z and y are points of E3 with ||z — y|| = p2. According to 3) in
Benz [4, §2], there exists a pi-set P in F; such that z and y are the pj-associated
points of P (see also the definition of E}). Since f|g, preserves p; (see Lemma 1),
P' = f(P) is also a pj-set in Y.

By 2) in Benz [4, §2], there exist only two distinct pj-associated points z’ and ¢/
of P’ whose distance is ||z’ — ¢/|| = pp. Thus, we get {f(z), f(¥)} € {«,¢'}, i.e.,
[1f(2) = f()] =0 or pa.

Assume f(z) = f(y). Choose a z € Ey with ||z — z|| = pg and |ly — 2| = ;y
(Because of y € Ep and ||y — z|| = p1, we conclude that z € Ei). In view of 3) in
Benz [4, §2], there exists a p1-set Q in E; such that x and z are the pj-associated
points of Q (Because z € E; and ||z — ¢q|| = p; for all ¢ € Q, Q is a subset of E;).
Hence, Q' = f(Q) is a pi-set in ¥ (see Lemma 1).

By 2) in Benz [4, §2], there exist exactly two distinct p;-associated points z” and
2" of Q' and ||z” — 2"|| = p2. Therefore, we have ||f(z) — f(2)|| = 0 or pq, i.e.,
lf(y) — f(2)]| = 0 or p2 because we assumed f(z) = f(y).

Since y, 2z € E1, by Lemma 1, we get p1 = |ly — 2|l = || f(y) — f(2)|]| =0 or po, a
contradiction. Altogether, we conclude that || f(z) — f(v)|| = p2- O

Lemma 3. If a mapping f : Ey — Y preserves the distance p, then the distance

p3 = v/¥(p, p1) = 2p/n is contractive by f|E,.

Proof. Assume that z and y are points of Ey with ||z — y|| = p3. By 3) in Benz [4,
§2], there exists a p;-set P in Ej such that z and y are the p-associated points of P
(x € E3 and ||z — p|| = p for all p € P. Hence, P is a subset of E7). By Lemma 1,
P = f(P) is also a p;-set in Y.

According to 2) in Benz [4, §2], there exist only two distinct p-associated points
z’ and y’ of P’ with ||z’ — ¢/|| = p3s. Hence, we obtain ||f(z) — f(y)|| =0 or p3, i.e.,
If(z) = FW)Il < ps. O

We are now ready to prove the main theorem of this paper.

Theorem 4. If a mapping f : Ey — Y preserves the distance p, then the restriction
flEs is an isometry. In particular, if any x,y of Eo satisfy T # ys, where x5, and
ys are the X-components of x and y, then it holds that || f(z) — f(¥)|| = ||z — y]l.
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Proof. According to Lemmas 2 and 3, the distance 2p/n is contractive and the

distance (n + 1)(2p/n) is extensive (preserved) by f|g,. Hence, by the theorem of

Jung and Rassias and by the remark belonging to that theorem, the restriction f|g,

is an isometry.

In view of the theorem of Jung and Rassias again, the second part of this theorem

is obviously true. O
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