• 제목/요약/키워드: displacement formulation

검색결과 446건 처리시간 0.021초

Modeling and simulation of partially delaminated composite beams

  • Mahieddine, A.;Ouali, M.;Mazouz, A.
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1119-1127
    • /
    • 2015
  • A finite-element model for beams with partially delaminated layers is used to investigate their behavior. In this formulation account is taken of lateral strains and the first-order shear deformation theory is used. Both displacement continuity and force equilibrium conditions are imposed between the regions with and without delamination. Numerical results of the present model are presented and its performance is evaluated for static and dynamic problems.

New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.;Ibrahim, Zainah
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.205-229
    • /
    • 2012
  • This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9) using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending problems. Three degrees of freedom: transverse displacement w and two rotations ${\theta}_x$ and ${\theta}_y$ are considered at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which accounts the effect of shear deformation. Many standard plate bending benchmark problems have been analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate defections and bending moments. These results of the new element MQP9 are compared with those of similar displacement-based plate bending elements available in the literature. The results are also compared with exact solutions. It is observed that the presented new element MQP9 is free from shear locking and produced, in general, excellent results in all plate bending benchmark problems considered.

Geometrically non-linear transient C° finite element analysis of composite and sandwich plates with a refined theory

  • Kommineni, J.R.;Kant, T.
    • Structural Engineering and Mechanics
    • /
    • 제1권1호
    • /
    • pp.87-102
    • /
    • 1993
  • A $C^{\circ}$ continuous finite element formulation of a higher order displacement theory is presented for predicting linear and geometrically non-linear in the sense of von Karman transient responses of composite and sandwich plates. The displacement model accounts for non-linear cubic variation of tangential displacement components through the thickness of the laminate and the theory requires no shear correction coefficients. In the time domain, the explicit central difference integrator is used in conjunction with the special mass matrix diagonalization scheme which conserves the total mass of the element and included effects due to rotary inertia terms. The parametric effects of the time step, finite element mesh, lamination scheme and orthotropy on the linear and geometrically non-linear responses are investigated. Numerical results for central transverse deflection, stresses and stress resultants are presented for square/rectangular composite and sandwich plates under various boundary conditions and loadings and these are compared with the results from other sources. Some new results are also tabulated for future reference.

CRTS 반사판의 구조적 인자가 형상오차에 미치는 영향 (The Influence of the Structural Parameters on the Shape Errors of CRTS Reflector)

  • 송원근;김승덕
    • 한국전산구조공학회논문집
    • /
    • 제16권1호
    • /
    • pp.87-94
    • /
    • 2003
  • 연속적으로 이루어지는 제작ㆍ조립 단계에서 변위하중을 받는 CRTS 반사판의 초기 정적평형상태론 결정하기 위하여 변위증분법을 사용하여 기하학적 비선형 유한요소 해석기법을 제시하고 반사반의 이상적인 형상파 실 제자 형상과의 차이, 즉 형상오차에 케이블 및 구조적 인자가 미치는 영향에 관한 연구를 수행한다. 본 연구 결과는 Galerkin method 와 NASS 98 Program을 사용하여 해석한 결과와 비교ㆍ검증하여 그 타당성을 입증한다.

비선형 유한요소법을 이용한 자동차 도어 웨더스트립의 접촉변형에 관한 연구 (A Study on Contact Deformation of Automotive Door Weatherstrip Using Non-linear Finite Element Method)

  • 김병수;문병영;김광훈
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2005
  • In vehicle door system, weatherstrip seals protect passengers form noise, dust, rain and wind out of the vehicle. The higher efficient a weatherstrip is, the more durable it is in contact between the door and body frame. In this study, nonlinear finite element(FE) analysis is performed to obtain cauchy-stresses, displacements and reaction forces of the weatherstrip. Mechanical properties of the weatherstrip is obtained by uniaxial tension test. The MARC which is a commercial software for the nonlinear analysis of a flexible FE model is used. Twenty-one cases of the FE model are developed by using Ogden-foam formulation. In the results of nonlinear FE analysis, the most valuable deformation of the weatherstrip occurred when displacement control value reaches 7.2mm. Severe deformation is observed as the displacement control value become more increased. When the weatherstrip is designed, it would be considered that the displacement value of the weatherstrip has to be less than 7.2mm.

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • 제13권2호
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

Prediction of nominal wake of a semi-displacement high-speed vessel at full scale

  • Can, Ugur;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제12권2호
    • /
    • pp.143-157
    • /
    • 2022
  • In this study, the nominal wake field of a semi-displacement type high-speed vessel was computed at full scale by using CFD (Computational Fluid Dynamics) and GEOSIM-based approaches. A scale effect investigation on nominal wake field of benchmark Athena vessel was performed with two models which have different model lengths. The members of the model family have the same Fr number but different Re numbers. The spatial components of nominal wake field have been analyzed by considering the axial, radial and tangential velocities for models at different scales. A linear feature has been found for radial and tangential components while a nonlinear change has been obtained for axial velocity. Taylor wake fraction formulation was also computed by using the axial wake velocities and an extrapolation technique was carried out to get the nonlinear fit of nominal wake fraction. This provides not only to observe the change of nominal wake fraction versus scale ratios but also to estimate accurately the wake fraction at full-scale. Extrapolated full-scale nominal wake fractions by GEOSIM-based approach were compared with the full-scale CFD result, and a very good agreement was achieved. It can be noted that the GEOSIM-based extrapolation method can be applied for estimation of the nominal wake fraction of semi-displacement type high-speed vessels.

Steel hexagonal damper-brace system for efficient seismic protection of structures

  • Mohammad Mahdi, Javidan;Jinkoo, Kim
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.683-695
    • /
    • 2022
  • Conventional braces are often used to provide stiffness to structures; however due to buckling they cannot be used as seismic energy dissipating elements. In this study, a seismic energy dissipation device is proposed which is comprised of a bracing member and a steel hysteretic damper made of steel hexagonal plates. The hexagonal shaped designated fuse causes formation of plastic hinges under axial deformation of the brace. The main advantages of this damper compared to conventional metallic dampers and buckling-restrained braces are the stable and controlled energy dissipation capability with ease of manufacture. The mechanical behavior of the damper is formulated first and a design procedure is provided. Next, the theoretical formulation and the efficiency of the damper are verified using finite element (FE) analyses. An analytical model of the damper is established and its efficiency is further investigated by applying it to seismic retrofit of a case study structure. The seismic performance of the structure is evaluated before and after retrofit in terms of maximum interstory drift ratio, top story displacement, residual displacement, and energy dissipation of dampers. Overall, the median of maximum interstory drift ratios is reduced from 3.8% to 1.6% and the residual displacement decreased in the x-direction which corresponds to the predominant mode shape of the structure. The analysis results show that the developed damper can provide cost-effective seismic protection of structures.

유연도 매트릭스를 사용한 기하학적 비선형 해석방법 (Geomatrically Non-linear Analysis Method by Curvature Based Flexibility Matrix)

  • 김진섭;권민호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.125-135
    • /
    • 2011
  • 유연도법 기반의 공식화에서는 변위영역의 형상함수를 라그랑지언(Lagrangian)보간법에 의한 곡률로부터 횡방향 변위를 유도한다. 곡률변위보간법으로 유도한 매트릭스를 사용한 기하학적 비선형 해석방법과 강성도법을 기반으로 한 비선형 기존의 유한요소 해석 프로그램의 결과를 비교하여 적용이 가능함을 확인하였고, Spacone의 이론을 확장시켜 기하학적 비선형 거동을 예측할 수 있는 유연도법의 알고리즘을 제안하였다. 예제를 통하여 실제 문제에 대한 기하학적 비선형 해석을 수행하였다.

비대칭단면을 갖는 박벽 공간뼈대구조의 횡-비틂 후좌굴 유한요소해석 (Lateral-Torsional Post-Buckling Analyses of Thin-Walled Space Frames with Non-symmetric Sections)

  • 박효기;김성보;김문영;장승필
    • 한국강구조학회 논문집
    • /
    • 제11권2호통권39호
    • /
    • pp.153-165
    • /
    • 1999
  • 비대칭단면을 갖는 박벽 공간뼈대구조의 횡후좌굴거동을 조사하기 위하여 기하학적 비선형 유한요소 해석법을 제시한다. 대변형효과를 고려한 연속체의 증분평형방정식으로부터, 도심에서 정의되는 딤(warping)함수를 고려하고 유한한 회전각의 2차항 효과를 포함하는 변위장을 도입하여 초기응력을 받는 박벽 공간뼈대요소의 증분평형방정식을 유도한다. 박벽 공간뼈대구조를 유한요소로 나누고 변위장을 요소변위에 관한 Hermitian 다항식으로 나타내어 이를 평형방정식에 대입함으로써 접선강도행렬을 유도한다. 또한 updated Lagrangian co-rotational formulation에 근거하여, 증분변위로부터 강체회 전변위와 순수변형성분을 분리시켜서 강체회전은 요소의 방향변화를 결정하고, 순수변형은 부재력증분을 산정하는 불평형하중 산정법을 제시한다.

  • PDF