Browse > Article
http://dx.doi.org/10.12989/sem.2012.41.2.205

New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM  

Dhananjaya, H.R. (Department of Civil Engineering, Nitte Meenakshi Institute of Technology)
Pandey, P.C. (Department of Civil Engineering, Indian Institute of Science)
Nagabhushanam, J. (Department of Aerospace Engineering, Indian Institute of Science)
Ibrahim, Zainah (Department of Civil Engineering, University of Malaya)
Publication Information
Structural Engineering and Mechanics / v.41, no.2, 2012 , pp. 205-229 More about this Journal
Abstract
This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9) using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending problems. Three degrees of freedom: transverse displacement w and two rotations ${\theta}_x$ and ${\theta}_y$ are considered at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which accounts the effect of shear deformation. Many standard plate bending benchmark problems have been analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate defections and bending moments. These results of the new element MQP9 are compared with those of similar displacement-based plate bending elements available in the literature. The results are also compared with exact solutions. It is observed that the presented new element MQP9 is free from shear locking and produced, in general, excellent results in all plate bending benchmark problems considered.
Keywords
integrated force method; mindlin-reissner plate theory stress-resultant fields; displacement fields; shear locking;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Choi, C.K. and Park, Y.M. (1999), "Quadratic NMS Mindlin-plate-bending element", Int. J. Numer. Meth. Eng., 46(8), 1273-1289.   DOI   ScienceOn
2 Choi, C.K., Lee, T.Y. and Chung, K.Y. (2002), "Direct modification for nonconforming elements with drilling DOF", Int. J. Numer. Meth. Eng., 55(12), 1463-1476.   DOI   ScienceOn
3 Chen, W.J. and Cheung, Y.K. (1987), "A new approach for the hybrid element method", Int. J. Numer. Meth. Eng., 24, 1697-1709.   DOI   ScienceOn
4 Darylmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215.   DOI
5 Darylmaz, K. and Kumbasar, N. (2006), "An 8-node assumed stress hybrid element for analysis of shells", Comput. Struct., 84, 1990-2000.   DOI   ScienceOn
6 Dhananjaya, H.R., Pandey, P.C. and Nagabhushanam, J. (2009), "New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method", Struct. Eng. Mech. 33(4), 485-502.   DOI
7 Dimitris, K, Hung, L.T., and Atluri, S.N. (1984), "Mixed finite element models for plate bending analysis, A new element and its applications", Comput. Struct., 19(4), 565-581.   DOI   ScienceOn
8 Hughes, T.J.R. and Cohen, M. (1978), "The 'heterosis' finite element for plate bending", Comput. Struct., 9(5), 445-450.   DOI   ScienceOn
9 Kaljevic, I., Patnaik, S.N. and Hopkins, D.A. (1996), "Development of finite elements for two- dimensional structural analysis using Integrated Force Method", Comput. Struct., 59(4), 691-706.   DOI   ScienceOn
10 Kaljevic, I., Patnaik, S.N. and Hopkins, D.A. (1996), "Three dimensional structural analysis by Integrated Force Method", Comput. Struct., 58(5), 869-886.   DOI   ScienceOn
11 Kanber, B. and Bozkurt. Y. (2006), "Finite element analysis of elasto-plastic plate bending problems using transition rectangular plate elements", Acta Mechanica Sinica, 22, 355-365.   DOI   ScienceOn
12 Kaneko, L., Lawo, H. and Thierauf G. (1983), "On computational procedures for the force method", Int. J. Numer. Meth. Eng., 18, 1469-1495.
13 Krishnam Raju, N.R.B. and Nagabhushanam, J. (2000), "Non-linear structural analysis using integrated force method", Sadhana J., 25(4), 353-365.   DOI   ScienceOn
14 Lee, S.W. and Wong, S.C. (1982), "Mixed formulation finite elements for Mindlin theory plate bending", Int. J. Numer. Meth. Eng., 18, 1297-1311.   DOI
15 Liu, J., Riggs, H.R. and Tessler, A. (2000), "A four node shear-deformable shell element developed via explicit Kirchhoff constraints", Int. J. Numer. Meth. Eng., 49, 1065-1086.   DOI   ScienceOn
16 Morley, L.S.D. (1963), Skew plates and structures, Pergamon press, Oxford.
17 Nagabhushanam, J. and Patnaik, S.N. (1990), "General purpose program to generate compatibility matrix for the integrated force method", AIAA J., 28, 1838-1842.   DOI
18 Nagabhushanam, J. and Srinivas, J. (1991), "Automatic generation of sparse and banded compatibility matrix for the Integrated Force Method", Comput. Mech. '91, Int. Conference on Comput. Eng. Scei., Patras, Greece.
19 NISA Software and manual (Version 9.3)
20 Ozgan, K. and Daloglu, A.T. (2007), "Alternate plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86.   DOI
21 Patnaik, S.N. (1973), "An integrated force method for discrete analysis", Int. J. Numer. Meth. Eng., 41, 237-251.
22 Patnaik, S.N. (1986), "The variational energy formulation for the Integrated Force Method", AIAA J., 24,129- 137.   DOI   ScienceOn
23 Patnaik, S.N., Berke, L. and Gallagher, R.H. (1991), "Integrated force method verses displacement method for finite element analysis", Comput. Struct., 38(4), 377-407.   DOI   ScienceOn
24 Patnaik, S.N., Coroneos, R.M. and Hopkins, D.A. (2000), "Compatibility conditions of structural mechanics", Int. J. Numer. Meth. Eng., 47, 685-704.   DOI   ScienceOn
25 Patnaik, S.N. Hopkins, D.A. and Coroneos, R. (1986), "Structural Optimization with approximate sensitivities", Comput. Struct., 58, 407-418.
26 Patnaik, S.N. and Yadagiri, S. (1976), "Frequency analysis of structures by Integrated Force Method", Comput. Meth. Appli. Mech. Eng., 9, 245-265.   DOI   ScienceOn
27 Pian, T.H.H. (1964), "Derivation of element stiffness matrices by assumed stress distributions", A.I.A.A J., 2, 1333-1336.
28 Pian, T.H.H. and Chen, D.P. (1982), "Alternative ways for formulation of hybrid stress elements", Int. J. Numer. Meth. Eng., 19, 1741-1752.
29 Przemieniecki, J.S. (1968), Theory of Matrix Structural Analysis, McGraw Hill, New York.
30 Razzaque, A. (1973), "Program for triangular plate bending element with derivative smoothing", Int. J. Numer. Meth. Eng., 6, 333-345.   DOI   ScienceOn
31 Reissner, E. (1945), "The effect of transverse shear deformation on bending of plates", J. Appl. Mech., 12, A69-A77.
32 Robinson, J. (1973), Integrated Theory of Finite Elements Methods, Wiley, New York
33 Spilker, R.L. (1982), "Invariant 8-node hybrid-stress elements for thin and moderately thick plates", Int. J. Numer. Meth. Eng., 18, 1153-1178.   DOI   ScienceOn
34 Kim, S.H. and Choi, C.K. (2005), "Modeling of Plates and Shells: Improvement of quadratic finite element for Mindlin plate bending", Int. J. Numer. Meth. Eng., 34(1), 197-208.
35 Timoshenko, S.P. and Krieger, S.W. (1959), Theory of plates and shells, Second Edition, McGraw Hill International Editions.
36 Tong, P. (1970), "New displacement hybrid finite element models for solid continua", Int. J. Numer. Meth. Eng., 2, 73-83.   DOI