• Title/Summary/Keyword: discrete volume

Search Result 149, Processing Time 0.022 seconds

Error and Correction Schemes of Control Volume Radiative Energy with the Discrete Ordinates Interpolation Method (제어체적 복사열정산을 위한 구분종좌표보간법의 오차 및 보정방안)

  • Cha, Ho-Jin;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.796-803
    • /
    • 2003
  • The discrete ordinates interpolation method (DOIM) has shown good accuracy and versatile applicability for the radiation $problems^{(1,2)}$. The DOIM is a nonconservative method in that the intensity and temperature are computed only at grid points without considering control volumes. However, when the DOIM is used together with a finite volume algorithm such as $SIMPLER^{(3)}$, intensities at the control surfaces need to be calculated. For this reason, a 'quadratic' and a 'decoration' schemes are proposed and examined. They are applied to two kinds of radiation problem in one-dimensional geometries. In one problem, the intensity and temperature are calculated while the radiative heat source is given, and in the other, the intensity and the radiative heat source are computed with a given temperature field. The quadratic and the decoration schemes show very successful results. The quadratic scheme gives especially accurate results so that further decoration may not be needed. It is recommended that the quadratic and the decoration schemes may be used together, or, one of them may be applied for control volume radiative energy balance.

Using a Lagrangian-Lagrangian approach for studying flow behavior inside a bubble column

  • YoungWoo Son;Cheol-O Ahn;SangHwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4395-4407
    • /
    • 2023
  • Bubble columns are widely encountered in several industries, especially in the field of nuclear safety. The Eulerian-Eulerian and the Eulerian-Lagrangian methods are commonly used to investigate bubble columns. Eulerian approaches require additional tasks such as strict volume conservation at the interface and a predefined well-structured grid. In contrast, the Lagrangian approach can be easily implemented. Hence, we introduce a fully Lagrangian approach for the simulation of bubble columns using the discrete bubble model (DBM) and moving particle semi-implicit (MPS) methods. Additionally, we propose a rigorous method to estimate the volume fraction accurately, and verified it through experimental data and analytical results. The MPS method was compared with the experimental data of Dambreak. The DBM was verified by analyzing the terminal velocity of a single bubble for each bubble size. It agreed with the analytical results for each of the four drag correlations. Additionally, the improved method for calculating the volume fraction showed agreement with the Ergun equation for the pressure drop in a packed bed. The implemented MPS-DBM was used to simulate the bubble column, and the results were compared with the experimental results. We demonstrated that the MPS-DBM was in quantitative agreement with the experimental data.

Discrete element numerical simulation of dynamic strength characteristics of expanded polystyrene particles in lightweight soil

  • Wei Zhou;Tian-shun Hou;Yan Yang;Yu-xin Niu;Ya-sheng Luo;Cheng Yang
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.577-595
    • /
    • 2023
  • A dynamic triaxial discrete element numerical model of lightweight soil was established using the discrete element method to study the microscopic mechanism of expanded polystyrene (EPS) particles in the soil under cyclic loading. The microscopic parameters of the discrete element model of the lightweight soil were calibrated depending on the dynamic triaxial test hysteresis curves. Based on the calibration results, the effects of the EPS particles volume ratio and amplitude on the contact force, displacement field, and velocity field of the lightweight soil under different accumulated strains were studied. The results showed that the hysteresis curves of lightweight soil exhibit nonlinearity, hysteresis, and strain accumulation. The strain accumulated in remolded soil is mainly tensile strain, and that in lightweight soil is mainly compressive strain. As the volume ratio of EPS particles increased, the contact force first increased and then decreased, and the displacement and velocity of the particles increased accordingly. With an increase in amplitude, the dynamic stress of the particle system increased, and the accumulation rate of the dynamic strain of the samples also increased. At 5% compressive strain, the contact force of the particles changed significantly and the number of particles deflected in the direction of velocity also increased considerably. These results indicated that the cemented structure of the lightweight soil began to fail at a compressive strain of 5%. Thus, a compressive strain of 5% is more reasonable than the dynamic strength failure standard of lightweight soil.

VUS and HUM Represented with Mann-Whitney Statistic

  • Hong, Chong Sun;Cho, Min Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.223-232
    • /
    • 2015
  • The area under the ROC curve (AUC), the volume under the ROC surface (VUS) and the hypervolume under the ROC manifold (HUM) are defined and interpreted with probability that measures the discriminant power of classification models. AUC, VUS and HUM are expressed with the summation and integration notations for discrete and continuous random variables, respectively. AUC for discrete two random samples is represented as the nonparametric Mann-Whitney statistic. In this work, we define conditional Mann-Whitney statistics to compare more than two discrete random samples as well as propose that VUS and HUM are represented as functions of the conditional Mann-Whitney statistics. Three and four discrete random samples with some tie values are generated. Values of VUS and HUM are obtained using the proposed statistic. The values of VUS and HUM are identical with those obtained by definition; therefore, both VUS and HUM could be represented with conditional Mann-Whitney statistics proposed in this paper.

A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON TETRAHEDRON GRIDS

  • Nie, Cunyun;Tan, Min
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.765-778
    • /
    • 2012
  • We construct a symmetric finite volume element (SFVE) scheme for a self-adjoint elliptic problem on tetrahedron grids and prove that our new scheme has optimal convergent order for the solution and has superconvergent order for the flux when grids are quasi-uniform and regular. The symmetry of our scheme is helpful to solve efficiently the corresponding discrete system. Numerical experiments are carried out to confirm the theoretical results.

Chaotic Synchronization of Using HVPM Model (HVPM 모델을 이용한 카오스 동기화)

  • 여지환;이익수
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.4
    • /
    • pp.75-80
    • /
    • 2001
  • In this paper, we propose a new chaotic synchronization algorithm of using HVPM(Hyperchaotic Volume Preserving Maps) model. The proposed chaotic equation, that is, HVPM model which consists of three dimensional discrete-time simultaneous difference equations and shows uniquely random chaotic attractor using nonlinear maps and modulus function. Pecora and Carrol have recently shown that it is possible to synchronize a chaotic system by sending a signal from the drive chaotic system to the response subsystem. We proposed coupled synchronization algorithm in order to accomplish discrete time hyperchaotic HVPM signals. In the numerical results, two hyperchaotic signals are coupled and driven for accomplishing to the chaotic synchronization systems. And it is demonstrated that HVPM signals have shown the chaotic behavior and chaotic coupled synchronization.

  • PDF

Effective Heater-Area and Droplet-Volume Adjustable Microinjectors Using a Digitally Controlled Single Heater (단일 히터의 디지털 구동을 통한 유효 히터면적 변화 및 분사 액적크기 조절이 가능한 미소유체분사기)

  • Je Chang Han;Kang Tae Goo;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.67-73
    • /
    • 2005
  • The paper presents a single-heater microfluid injector, whose ejected droplet volume is adjusted by digital current path control for a single microheater. The previous droplet volume adjustable methods have used the digital current control for multiple heaters or the analog current control for a single heater, while the present method uses the digital current control for a single microheater. Two different microinjectors, having a rectangular heater and a circular hearter, are designed and fabricated in the chip area of $7.64\;mm{\times}5.26\;mm$. The fabricated microinjectors have been tested and characterized for the number, size, shape and lifetime of the generated bubbles as well as for the volume and velocity of the ejected droplets. The input power for the rectangular heater and the circular heater has been varied in the ranges of $8.7{\sim}24.9{\mu}W\;and\;8.1{\sim}43.8{\mu}W$, respectively. The projected area of the generated bubble has been changed in the ranges of $440{\sim}l,3600{\mu}m^2\;and\;800{\sim}3,300{\mu}m^2$ for the rectangular heater and the circular heater, respectively. The microinjector with the rectangular heater ejects three discrete levels of the droplet in the volume range of $9.4{\sim}20.7pl$ with the velocity range of $0.8{\sim}1.7m/s$, while the microinjector with the circular heater achieves five discrete levels of the droplet in the volume range of $7.4{\sim}27.4pl$ with the velocity range of $0.5{\sim}2.8m/s$.

Investigation on Numerical Integration for Radiation Heat Transfer in Radiating Fluid (복사유체의 복사열전달 수치 적분에 관한 연구)

  • Han Cho Young
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.43-51
    • /
    • 2004
  • Interaction between fluid flow and thermal radiation has received considerable attention due to its numerous applications in engineering field. In this case the thermofluid properties of radiating fluid vary with the variation of temperature field caused by absorption and emission of radiant heat. To analyze the radiation heat transfer in radiating fluid, the simultaneous solution of the radiative transfer equation (RTE) and the fluid dynamics equations is required. This means that the numerical procedure used for the RTE must be computationally efficient to permit its inclusion in the other submodels, and must be compatible with the other transport equations. The finite volume method (FVM) and the discrete ordinates method (DOM) are usually employed to simulate radiation problems in generalized coordinates. These two representative methods are examined and compared, especially in view of the numerical integration of the radiation intensity over solid angle. The FVM shows better accuracy than the DOM owing to less constraints of the selection of control angle.

Optimum Design of Multi-Stage Gear Drive Using Genetic Algorithm Mixed Binary and Real Encoding (이진코딩과 실수코딩이 조합된 유전 알고리즘을 이용한 다단 기어장치의 최적설계)

  • 정태형;홍현기;이정상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.118-123
    • /
    • 2004
  • In this study, genetic algorithm mixed binary and real encoding is proposed to deal with design variables of various types. And that is applied to optimum design of Multi-stage gear drive. Design of pressure vessel which is mixed discrete and continuous variables is applied to verify reasonableness of proposed genetic algorithm. The proposed genetic algorithm is applied for the gear ratio optimization and the volume minimization of geared motor which is used in field. In result, it shows that the volume has decreased about 8% compared with the existing geared motor.

  • PDF

Investigation on Numerical Integration for Radiation Heat Transfer in Radiating Fluid (복사유체의 복사열전달 수치 적분에 관한 연구)

  • Han Cho Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.62-70
    • /
    • 2004
  • Interaction between fluid flow and thermal radiation has received considerable attention due to its numerous applications in engineering field. In this case the thermofluid properties of radiating fluid vary with the variation of temperature field caused by absorption and emission of radiant heat. To analyze the radiation heat transfer in radiating fluid, the simultaneous solution of the radiative transfer equation (RTE) and the fluid dynamics equations is required. This means that the numerical procedure used for the RTE must be computationally efficient to permit its inclusion in the other submodels, and must be compatible with the other transport equations. The finite volume method (FVM) and the discrete ordinates method (DOM) are usually employed to simulate radiation problems in generalized coordinates. These two representative methods are examined and compared, especially in view of the numerical integration of the radiation intensity over solid angle. The FVM shows better accuracy than the DOM owing to less constraints of the selection of control angle.

  • PDF