• Title/Summary/Keyword: discrete systems

Search Result 1,856, Processing Time 0.029 seconds

Design of generalized predictive controller for discrete-time chaotic systems (아산치 혼돈 시스템의 제어를 위한 일반형 예측 제어기의 설계)

  • 박광성;주진만;박진배;최윤호;윤태성
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.53-62
    • /
    • 1997
  • In this study, a controller design method is proposed for controlling the discrete-time chaotic systems efficiently. The proposed control method is based on Generalized Predictive Control and uses NARMAX models as controlled models. In order to evaluate the performance of the proposed method, a proposed controller is applied to discrete-time chaotic systems, and then the control performance and initial sensitivity of the proposed controller are compared with those of the conventional model-based controler through computer simulations. Through simulations results, it is shown that the control performance of the proposed controller is superior to that of the conventional model-based controller and shown that the peorposed controller is less sensitive to initial values of discrete-time chaotic systems in comparison with the conventional model-based controller.

  • PDF

Discrete Event Model Conversion Algorithm for Systematic Analysis of Ladder Diagrams in PLCs (PLC 래더다이어그램의 체계적인 분석을 위한 이산사건모델 변환 알고리즘)

  • Kang, Bong-Suk;Cho, Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.401-406
    • /
    • 2002
  • As product lifecycles become shorter, factories are pushed to develop small batches of many different products. The highly flexible control systems has become a necessity. The majority of existing automated industrial systems are controlled by programmable logic controllers(PLCs). In most cases, the control programs for PLCs are developed based on ladder diagrams(LDs). However, it is difficult to debug and maintain those LDs because the synthesis of LD itself mainly depends on the experience of the industrial engineer via trial-and-error methods. Hence, in this paper, we propose a discrete event model conversion algorithm for systematic analysis of LDs. The proposed discrete event model conversion algorithm is illustrated by an example of a conveyor system.

New method for LQG control of singularly perturbed discrete stochastic systems

  • Lim, Myo-Taeg;Kwon, Sung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.432-435
    • /
    • 1995
  • In this paper a new approach to obtain the solution of the linear-quadratic Gaussian control problem for singularly perturbed discrete-time stochastic systems is proposed. The alogorithm proposed is based on exploring the previous results that the exact solution of the global discrete algebraic Riccati equations is found in terms of the reduced-order pure-slow and pure-fast nonsymmetric continuous-time algebraic Riccati equations and, in addition, the optimal global Kalman filter is decomposed into pure-slow and pure-fast local optimal filters both driven by the system measurements and the system optimal control input. It is shown that the optimal linear-quadratic Gaussian control problem for singularly perturbed linear discrete systems takes the complete decomposition and parallelism between pure-slow and pure-fast filters and controllers.

  • PDF

Stability Bounds of Delayed Time-varying Perturbations of Discrete Systems (이산시스템에서 시간지연을 갖는 시변 상태 지연 섭동의 안정 범위에 관한 연구)

  • Lee, Dal-Ho;Han, Hyung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.147-153
    • /
    • 2007
  • The stability robustness problem of linear discrete-time systems with delayed time-varying perturbations is considered. Compared with continuous time system, little effort has been made for the discrete time system in this area. In the previous results, the bounds were derived for the case of non-delayed perturbations. There are few results for delayed perturbation. Although the results are for the delayed perturbation, they considered only the time-invariant perturbations. In this paper, the sufficient conditions for stability can be expressed as linear matrix inequalities(LMIs). The corresponding stability bounds are determined by LMI(Linear Matrix Inequality)-based algorithms. Numerical examples are given to compare with the previous results and show the effectiveness of the proposed results.

Robust Passive Low-order Filtering for Discrete-time Uncertain Descriptor Systems (이산시간 불확실 특이시스템의 저차 강인 피동성 필터링)

  • Kim, Jong-Hae;Oh, Do-Cang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.466-471
    • /
    • 2012
  • In this paper, we consider the problem of a robust passive filtering with low-order for discrete-time singular systems with polytopic uncertainties. A BRL(bounded real lemma) for robust passivity with a dissipativity of discrete-time uncertain singular systems is derived. A low-order robust passive filter design method is proposed by new reduced-order method and LMI(linear matrix inequality) technique on the basis of the obtained BRL. Finally, illustrative examples are presented to show the applicability of the proposed method.

Delay-dependent Robust $H_{\infty}$ Control for Uncertain Discrete-time Descriptor Systems with Interval Time-varying Delays in State and Control Input (상태와 입력에 구간 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연 종속 강인 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we consider the design problem of delay-dependent robust $H{\infty}$ controller of discrete-time descriptor systems with parameter uncertainties and interval time-varying delays in state and control input by delay-dependent LMI (linear matrix inequality) technique. A new delay-dependent bounded real lemma for discrete-time descriptor systems with time-varying delays is derived. The condition for the existence of robust $H{\infty}$ controller and the robust $H{\infty}$ state feedback control law are proposed by LMI approach. A numerical example is demonstrated to show the validity of the design method.

Asymptotic Stability of Discrete-Time Linear Systems with Time Varying Delays (시변시간지연을 갖는 이산시간 선형시스템의 점근안정도)

  • Song, Seong-Ho;Kim, Jeom-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.641-643
    • /
    • 1998
  • This paper deals with the stability of discrete time linear systems with time - varying delays in state. In this paper, the magnitude of time - varying delays is assumed to be upper-bounded. The stability of discrete time linear systems with time - varying delays in state is related with the stability of discrete time linear systems with constant time delay in state. To show this, a new Lyapunov function is proposed. Using this Lyapunov function, a sufficient condition for the asymptotic stability is derived.

  • PDF

Delay-dependent Robust Stability of Discrete-time Uncertain Delayed Descriptor Systems using Quantization/overflow Nonlinearities (양자화와 오버플로우 비선형성을 가지는 이산시간 불확실 지연 특이시스템의 지연종속 강인 안정성)

  • Kim, Jong-Hae;Oh, Do-Cang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • This paper considers the problem of robust stability for uncertain discrete-time interval time-varying delayed descriptor systems using any combinations of quantization and overflow nonlinearities. First, delay-dependent linear matrix inequality (LMI) condition for discrete-time descriptor systems with time-varying delay and quantization/overflow nonlinearities is presented by proper Lyapunov function. Second, it is shown that the obtained condition can be extended into descriptor systems with uncertainties such as norm-bounded parameter uncertainties and polytopic uncertainties by some useful lemmas. The proposed results can be applied to both descriptor systems and non-descriptor systems. Finally, numerical examples are shown to illustrate the effectiveness and less conservativeness.

Model Indentification and Discrete-Time Sliding Mode Control of Electro-Hydraulic Systems (전기-유압 서보 시스템의 모델규명 및 이산시간 슬라이딩 모드 제어)

  • 엄상오;황이철;박영산
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.94-103
    • /
    • 2000
  • This paper describes the model identification and the discrete-time sliding mode control of electro-hydraulic servo systems which are composed of servo valves, double-rod cylinder and load mass. The controlled plant is identified as a 3th-order discrete-time ARMAX model obtained from the prediction error algorithm, where a nominal model and modeling errors are zuantitatively constructed. The discrete sliding mode controller for 3th-order ARMAX model is designed in discrete-time domain, where all states are observed from Kalman filter. The discrete sliding mode controller has better tracking performance than that obtained from continuous-time sliding mode controller, in experiment.

  • PDF

Optimal Design of Discrete Time Preview Controllers for Semi-Active and Active Suspension systems

  • Youn, Il-Joong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.807-815
    • /
    • 2000
  • In this paper, modified discrete time preview control algorithms for active and semi-active suspension systems are derived based on a simple mathematical 4 DOF half-car model. The discrete time preview control laws for ride comfort are employed in the simulation. The algorithms for MIMO system contain control strategies reacting against body forces that occur at cornering, accelerating, braking, or under payload, in addition to road disturbances. Matlab simulation results for the discrete time case are compared with those for the continuous time case and the appropriateness of the discrete time algorithms are verified by the of simulation results. Passive, active, and semi-active system responses to a sinusoidal input and an asphalt road input are analysed and evaluated. The simulation results show the extent of performance degradation due to numerical errors related to the length of the sampling time and time delay.

  • PDF