• Title/Summary/Keyword: discrete systems

Search Result 1,856, Processing Time 0.026 seconds

Supervisor for Real-Time Nondeterministic Discrete Event Systems Under Bounded Time Constraints

  • Park, Seong-Jin;Cho, Kwang-Hyun;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.104.4-104
    • /
    • 2001
  • This paper addresses a supervisory control problem to meet bounded time constraints in real-time nondeterministic discrete event systems (DESs) represented as timed transition models. For a timed language specification representing a bounded time constraint, this paper introduces the notions of trace-controllability and time-controllability. Based on the notions, this paper presents the necessary and sufficient conditions for the existence of a supervisor for a real-time nondeterministic DES to achieve the specification.

  • PDF

Output-feedback H_infinite Control of Discrete-time LPV Systems

  • Park, Doo-Jin;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.44.2-44
    • /
    • 2002
  • $\textbullet$ We propose a new H_infinite LPV output-feedback controller associated with a new PQLF $\textbullet$ The LPV controller employs not only the current-time but also the one-step-past information $\textbullet$ The controller is formulated with parameterized linear matrix inequalities $\textbullet$ We propose the new controller for discrete-time LPV systems $\textbullet$ As a conservative case, we suggest another controller associated with CQLF

  • PDF

Two-port machine model for discrete event dynamic systems (이산현상 시스템을 위한 두개의 입력을 가진 모델)

  • 이준화;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.212-217
    • /
    • 1992
  • In this paper, a two ports machine(TPM) model for discrete event dynamic systems(DEDS) is proposed. The proposed model is a finite state machine which has two inputs and two outputs. Inputs and outputs have two components, events and informations. TPM is different from other state machine models, since TPM has symmetric input and output. This symmetry enables the block diagram representation of the DEDS with TPM blocks, summing points, multiplying points, branch points, and connections. The graphical representation of DEDS is analogous to that of control system theory. TPM has a matrix representation of its transition and information map. This matrix representation simplifies the analysis of the DEDS.

  • PDF

Robust stabilization of linear discrete time systems with uncertain dynamics (불확실성이 있는 이산 시간 시스템의 강인 제어기 설계)

  • 이재원;이준화;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.742-746
    • /
    • 1992
  • This paper proposes a new linear robust state feedback controller for the linear discrete time systems which have uncertainties in the state and input matrices. The uncertainties need not satisfy the matching conditions, but only their bounds are needed to be known. The proposed controller is derived from the linear quadratic game problem, which solution is obtained via the modified algebraic Riccati equation. The controller guarantees the robust performance bound. The bound of the solution and the condition of the uncertainties, which can stabilize the uncertain system are explored.

  • PDF

LTI model realization problem of linear periodic discrete-time systems

  • Su, Laiping;Saito, Osami;Abe, Kenichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1139-1144
    • /
    • 1990
  • In this paper, we consider linear periodic discrete-time control systems under periodic compensation. Such a closed-loop system generally represents a periodic time-varying system. We examine the problem of finding a compensator such that the closed-loop system is realized as LTI model (if possible) with the closed-loop stability being satisfied. We present a necessary and sufficient condition for solving such problem and also give the characterization of realizable LTI models.

  • PDF

Robust servomechanism problem for linear discrete systems (선형 이산치 시스템의 Robust Servomechanism 문제)

  • ;Na, Seung You
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.135-138
    • /
    • 1987
  • A method for designing a robust tracking controller for linear discrete systems is investigated. Only the observable variables are to be used in the controller synthesis. To insure the robustness, the system is augmented by a compensator at the output side. Then a feedback controller is designed using delayed values of the observable variables for the augmented system. The delay times are chosen to minimize the effect of measurement accuracy and/or noise.

  • PDF

Optimal output feedback design for discrete large scale systems with two time-scale separation properties

  • Jin, Jong-Sam;Kim, Soo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.203-208
    • /
    • 1987
  • Design problem of output feedback controllers for discrete large scale systems using simplified model is investigated. It is shown that neglecting fast modes does not generally guarantee the stability of the closed loop system. In this paper, the design procedure is proposed to stabilize the system by minimizing a quadratic cost function for the simplified model and a measure of stability for the neglected fast model.

  • PDF

A Note on Discrete Interval System Reduction via Retention of Dominant Poles

  • Choo, Youn-Seok
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.208-211
    • /
    • 2007
  • In a recently proposed method of model reduction for discrete interval systems, the denominator polynomial of a reduced model is computed by applying interval arithmetic to dominant poles of the original system. However, the denominator polynomial obtained via interval arithmetic usually has poles with larger intervals than desired ones. Hence an unstable polynomial can be derived from the stable polynomial. In this paper a simple technique is presented to partially overcome such a stability problem by accurately preserving desired real dominant poles.

Discrete Variable Structure Control for Linear Time-Varying Systems

  • Park, Kang-Bak;Teruo Tsuji;Tsuyoshi Hanamoto;S. Umerjan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.508-508
    • /
    • 2000
  • In this paper, a discrete-time variable structure controller for linear time-varying systems with time-varying disturbances is proposed. The proposed method guarantees that the system state is globally uniformly ultimately bounded (G,U.U.B.) under the existence of external disturbances.

  • PDF