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Abstract

In this paper, a two ports machine(TPM)
mode! for discrete event dynamic systems(DEDS)
is proposed. The proposed model is a finite state
machine which has two inputs and two outputs.
Inputs and outputs have two components, events
and informations. TPM is different from other
state machine models, since TPM has symmet-
ric input and output. This symmietry enables
the block diagram representation of the DED-
S with TPM blocks, sununing points, multiply-
ing points, branch points, and connections. The
graphical representation of DEDS is analogous
TPM has a

matrix representation of its transition and infor-

to that of control system theory.

mation map. This matrix repersentation simpli-

fies the analysis of the DEDS.

INTRODUCTION

Most of systems can be repersented by their states
which characterize their behaviors. The states of a sys-
tem is finite or infinite according to its modeling objec-
tives. In case controlling the motion of the robot sys-
tem in Fig.1, the velocity and the position can represent
the robot’s behavior with infinite state values. Howev-
er, two states, 'WORK’ and 'IDLE’ can represent the
robot’s behavior when scheduling the job of the robot.
In any case, a system can be represented by its states.
Especially, discrete event dynamic systems(DEDS) can
be represented by countable number of states. The dy-
namics of DEDS is the transition between states. These
transitions are triggered by some factors in the system
or outside the system. The factors have two compo-

nents, events and informations. Events can enforce the
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transition of states due to the the informations which
are entered into the system. From the physical limita-
tions, the transition of states takes time. Hence, the
time when some event is occurred is different from the
time when state is changed. However, we are interested
in the logical behavior of the system, we assume thaf.
the transition time is negligible, namely the transition
time is zero as in Fig2. Events and informations are dis-
tinguished by their appearances. Events are appeared
instaneously, however informations are maintained be-
tween events. Hence, for the given DEDS there exist
internal events and informations whicli is in the system,
and external ones which is outside the system. It is no-

ticed that one system’s internal events and informations

are another system’s external ones. States, events, and

informations are illustrated in the following examples.
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Fig.1

Fig2.
Let’s consider a DEDS in Figl . The robot start-
s work when the switch makes a pulse. The operator
observes the busy lamp instead of the robot since the
robot exists in invisible position. There are two DED-
S, the opcerator-switch system and the robot system.
The switch has two states, 'ON’ and 'OFF’. The robot
has two states, IDLE’ and "WQRK'. There are four
events, 'PUSH BUTTON’, 'RELEASE BUTTON’, 's-
TARTS WORK’, and 'FINISHES WORK'’. The events,
'PUSH BUTTON’ and 'RELEASE BUTTON/, are in-

ternal events which is generated by the human oper-



The event, 'FINISHES WORK’, is an internal
event which is generated by the robot system. How-
ever, 'STARTS WORK’ is an external event, since it
must be generated by the other systems. There are two
informations, 'BUSY LAMP ON’ and 'BUSY LAMP

OFF’. The state and the events are shown by the state

ator.

transition diagram in Fig3. The operator pushes the
button according to the staus of the busy lamp which
provides an information of the robot system. This infor-
mation is a reflection of the states in the robot system.
The switch and the robot are connected by a line which
transmit the pulse. This line assigns the event 'PUSH
BUTTON' to the event 'STARTS WORK’. These rela-
tions are shown by the block diagram in Fig4. From the
above analysis of DEDS, we can know the followings: A
DEDS is composed of smaller DEDS which have inputs
and outputs. Inputs and outputs have two components,
events and informations. The inputs and the outputs
are connected by some physical media. Hence, we can
regard the DEDS as a two inputs and two outputs sys-
tem whose inputs are external events and informations
,and outputs are internal events and informations as in
Fig5. Events can enforces the transition of states due to

the status of informations as in the following example.
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Let’s consider the FLIP-FLOP system in Fig6 . The
state of the FLIP-FLOP is the logical valuc of the Q-
output. The event is the up-edge of the pulse input.
The information is the D-input of the FLIP-FLOP. The
transition of the state can be occured when the up-edge
of the pusle input is appeared. Clearly, the D-input of

the FLIP-FLOP controls the transition of the state.
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In summary, we can treat DEDS as a two ports mod-
el(TPM) whose inputs and outputs are composed of
events and informations. TPM representation is dis-
tinguished from the other finite state machine models
since TPM classifies events and informations into ex-
ternal and internal ones. Hence, the basic elements of
TPM are states, external events, internal events, exter-
nal informations, internal informations, a state transi-
tion map, and an information map. Using TPM, we can
treat DEDS as input/output systems. With the basic
assumption that all events cannot occurred simultane-
ously, we can define the summing point, the multiplying
point, and the branch point as block diagram elements.
Therefore, we can represent the most DEDS as a block
diagram with TPM blocks, summing points, multiply-
ing points, branch points, and connections. This block
diagram representation is analogous to the control sys-

tem theory.

Our model is differs from other models found in the
literature [1]-[16]. The usual models for analysing D-
EDS have states and events but their events are not
classified into internal and external ones. The plant
and the controller are not described by the same DEDS
structure in the usual state machine model(1],(6]-[7],[9]-
(12],{14]. For example, in the supervisory control the-
ory[1],6],[9],(11],(12],[14]. the controlled discrete event
process(CDEP) and the supervisor have events and con-
trol patterns as inputs and outputs. The events are gen-
erated only in the CDEP and the supervisor only accept-
s the generated events. The control patterns are gener-

ated in the supervisor and the CDEP only accepts the

control patterns. However, the CDEP and the supervi-
sor are also DEDS. This non-symmetric representation
of DEDS limits the connected system representations
and the block diagram representations of DEDS. How-
ever, TPM has symmetric inputs and outputs. Hence,
the connected DEDS block diagrams can be represented
by TPM. TPM is a general model in the sense that the
DEDS which is modeled by the existing state machine
model always be represented by TPM. This is because
TPM has the extended elements than the other model-
s for DEDS. Hence, the existing theories for the state
machine model can be reformulated for TPM, i.e. the
supervisory controller, the output stabilizer [16], and
the state observer [10],[15]. can be constructed in the

generalized form.



TPM also has matrix representations of its transiton
map and information map. This matrix representation
is analgous to the time varying discrete time systems.
Using the matrix representation of TPM, one can easily
analysis the DEDS with the computer. The reachability,
the controllability, the stabilizability, and the output
stabilizability of TPM are casily checked with simple
matrix algebra. The controllers of DEDS are also casily
obtained when the DEDS is modeled by TPM with the

matrix representation.

Several classes of models have been proposed for
describing the behavior of DEDS including, especial-
ly Petri nets and state machine(FSM). Automata and
formal language models initiated by Ramdge and Won-
ham [11]-[12], have been successfully used to study the
properties of DEDS in a variety of applications. Their
formal language model is essentially based on FSM.
The Ramadge and Wonham'’s approach treats the open-
loop plant and the controller separately where other ap-
proaches require a separate model for each control pol-
icy. The Ramadge and Wonham’s approach uses differ-
ent structures for the open-loop plant and the controller
unlikely those in control system theory. Due to this
unsymmetric representation of plants and controllers,
connected DEDS block diagram representations of such
model are impossible. And the controller synthesis pro-
cedures are complicated since the controllers are repre-
sented by a pair of an automaton and a function. How-
ever, both plants and controllers are DEDS, hence a
unified representation of plants and controllers are ex-
pected. One unified representation is our TPM. TPM
has symmetric input/output structure, so that plants
and controllers can be represented by the same struc-
ture and block representation is possible for connected

DEDS.

The objective of the Ramadge and Wonham'’s model
is to control DEDS,; so that the resulting event sequences
lies in a desired set or language of strings of events. In
contrast, Ozveren and Willsky proposed another objec-
tive, controlling the state of DEDS so that it returns
regulary to a specified set of states in [15]-[16]. Their
objectives can be unified into controlling the DEDS so
that the resulting state sequences lies in a desired set of
strings of ststes. Hence, controlling the state sequences

is a basic control objective of DEDS.
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In the next section, we introduce the mathemati-
cal model and assumptions for TPM. The definition of
summing poins, multiplying points, strings, and finite
systems are described. n Section 3, we present some

conclusions.

2 PRELIMINARIES

A. Mathematical Model of Two-Port Machines

Two-Port Machines(TPM) are DEDS which is char-

acterized by the following seven-tuples:

D= (Qy Eins Zvuh Fim Fnubfvg) (1>

where Q is the countable set of states, X, is the finite
set of input events generated externally and X, is
the finite set of output events generated internally.
I, is the set of all subsets of I, i.e. I, = 2% where
I;, is the set of input informations. I,,; is the set of
all subsets of I, i.e. Iy = 2% where I, is the set
of the output informations. The input sets, X, ',

and output scts, X,,,, [, are disjoint each other, i.e.

Einﬂzuut =(0, meFDuL:@' (2)
The system events set X, is defined by
Esys = Ein U Z1011[ . (3)

The elements 4, € I, Yo € Loy is said to be an input
pattern and an output pattern, respectively. f C
Iix X,y x Qx Q is a transition relation. g: [, xQ —

T4yt is the information output function.

With an abuse of notation we identify the relation f
with the point-to-set function f (v, o, ¢) = {¢’ € Q|(v., o,
And
we say that f(7, 0, ¢) is defined if it is nonempty. If

f} where q.¢' € Q, 0 € Xy, jand v € Iy, .

f (74 0, ¢) contains at most one state for every (v, 0, q) €

Fin % Xy x @, D is said to be deterministic and oth-
erwise undeterministic. f can be extended to set-to-
set function f : [y % Ly x 22 — 29 by flv, o) =
Uges f (7ir 0. ¢) where G is a subset of Q, i.e. §€ 29, The
function f preserves the nature of the function f since
fv,0,{q}) = f(yi0.q) where ¢ € Q. Hence, we will
identify the set-to-set function f with the point-to-set

function f and the singleton set {g} with the state q.

The function g is a point-to-set function considering

the output pattern v, as a subset of the information set

¢.q) €



Loui, and the input pattern +; as an element of the input
information set [;,. The function g can be extended to
a set-to-set function § : Iy, x 22 — 2% by j(y;, q) =
Uges 97 @) where ¢ € 29, We will identify § with ¢
since the set-to-set function § preserves the nature of

the point-to-set function g.

The system D is said to be finite if the number of
states, informations, and events are finite. The system
D is said to be proper if f(y,0,§) # 0 for all § #
b0 € Xy, and v € T The real systems arc always
proper since, all external events and informations can
be applied to the system at any time. The system D is
said to be strict if g(m, q) = g(. q) for all %, % & i
and ¢ € ©@. When a system is strict then the output
information is the function of state only, i.e. the output

function can be represented by 7, = g(q).

A proper system D id said to be striclty proper
when the system is also strict. The system P is said
to be reasonable if f(y,0,q) C f(m.0,q) for all 3 C

72 The reasonable system has more action for more
information. We will consider the strictly proper and

reasonable systems.
B. Assumptions For TPM

For TPM work propoerly, we assume the followings:

ASSUMPTION 1 All events occur tnstaneously and

asynchronously.

ASSUMPTION 2 Two events cannot occur simul-
taneously and the time between consecutive events

18 not fized.

These assumptions are already accepted by many au-
thors {1],[11],{17], for the formal language or automata
model. These assumptions eable counting the events
and numbering the events sequentially. Qur model TP-
M has information input/output which is similar to the
control patterns of the controlled discrete event system

in the formal language model.

With the above assumptions, the operation of TPM
is described as follows: TPM is a system such that if
it is in state ¢ € Q and its input pattern is -y; then
its output will be g(~;, ¢), furthermore if an event o €
Xsys is occurred then it will be in one of the state in
flrio.q).

tern are ¢(k) and 4, (k) then the &£’th output pattern is

Namely, if the k’th state and input pat-
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Yo(k) = g(~(k), q(k)). If the (k+1)th event o(k+1) oc-
curs, then the (k+1)'th state is g(k+1) € F(vdk), ok +
1), q(k)) .

In other DEDS model including the formal language
model, only one DEDS and the associated controller is
considered. Hence, these models does not explains the
connection of DEDS lLowever TPM explains the con-
nection of DEDS as in Section 2. The following is an

assumption that is needed to desrcibe such DEDS.

ASSUMPTION 3 All DEDS generate different events

and informations each other.

This assumption is very natural so that one may over-
look this. But this assumption gives a foundation in

order to integrate several DEDS as in Section 2.
C. Symbols and Strings of TPM

We introduce symbol sets and string sets with re-
spect to the system D. A, Aoy, and Ay, are an input
symbol set, an output symbol set, and an system

symbol set, respectively, defined by

A = Ty % (Z‘in U {6})
Agut 1= Do X (Zowr U {€}) 4)
Asya = Iy (Esys y {E})

where ¢ denotes the null event which cannot transit s-

tates, i.e. f(v1.6¢) =¢, forall v, € I, and g C Q.

Let X be a symbol set, X' denote the set of strings
of the elements of the symbol set X , including the
null symbol ». Hence, we can define the symbol sets,

AL AL

out?

.

and A7 . Each string set is a semigroup with
the identity v under concatenation, i.e. each string set
is a monoid.

We can extend the set-to-set transition function f
so that it maps Ay, x 29 into 29, by the repeated ap-

plication of the equalities:

fw.d = 4
fG = f(r.0.9) (5)
FsA @ = f(Af(59)

where § € 22, 5 € A%, and A = (7,0) € Ay, Using
these sysmbols, the system D can be represented by the

block symbol as in figure 2.2.
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fig 2.2

We will define two paritial operations, summing and
multiplying for a symbol set A := I' x X. The set ¥
may include the null event e. The summing operator

@ : A x A— Ais a partial operator such that

(mUm.a1), 0y =€
(M U . 09), oy =€
AD M= (6)
(MmUmo), o =0
undef ined, otherwise

where Aj,As € A, Le. Al = (m,00), M\ = (m, 04) for
some 7y, € I’ and 01,05 € X. The multiplying oper-

ator ® : A x A > A is a partial operator such that

{m My, 00), oy =€
(71 N 92, 09), oL =€
/\1 C’ /\'_) = ) ' (7)
(MmN Apo), o =0
undef ined, otherwise.

These partial operators are represented by graphic sym-

bols as follows:

M A LA
—
/\! — — A\ A\

Using these graphic symbols we can represent the sym-
bol flow of the system. By the assumption 2 in Section
2, the event in the symbol A; cannot be the same even-
t in the symbol A, at any instance. Hence the partial
operators, <& and O , are consistent with the graphical

representations.

The string set A}, acts on the system D, so that
29 is a right A s-set which means that, we can define

A -action on 29 by using the set-to-set function f as
2% x A5, - 29 (4,8) — §s

(8)

where §s = (s, §). Clearly, if s;, s, € A, then G(s1s,) =
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(4s1)s2 and gv = q.

Since f(A {g:} U{@}) = fFA{ah U f(A{q}) for
all ¢, ¢ € @, the action can be characterized by the
map

Qx A%, — 29

where gs = f(s,{q}).

(g.8) — gs )

Let Ty be a set of all transition map of @, ie. Tp =

{t|t: @ — 29}, then there is a homomorphism

AL = Ty s t (10)

sys

Vs ys

such that #(q) = ¢s for all ¢ € Q. Using this homomor-
phism %, we will define the unacceptable string
set

(11)

where 0 is the zero transition map which maps all s-

Araee = 1,4 (0)

tate to the empty set §. The acceptable string set is
defined by
A' = Av

.
acce sys A

uacc

(12)

represents all possible strings which

*
acce

The string set A
can occur in the system D. Imu,, represents the pos-
sible state transition map due to strings. Kert,,, rep-
resents the set of strings corresponding to the identity
transition. Each ¢t € Ty can be extended to set-to-set

function #: 292 — 29 by

Ha) = U ta) (13)

7§
We will identify the point-to-set function ¢ with the set-

to-set function ?.
D. Finite Systems

When the system D is finite, by numbering the state,
we can represent the subset § of Q as a Boolean vector
g. The transitions can be represented by Boolean matri-
ces M whose elements are 0 or 1, as in Figure 2.3. Since
we identify state ¢; € Q with the singleton set {¢;}, each
state ¢; can also be identified with the Boolean vector

q. whose elements are zero except i’th element.
=1

[ 1.0 00
00100
M =]0 0 0 1 1|
00001
0 00O

Fig 2.8



The empty state set is represented by the Boolean vec-
tor 0,.; where n is the number of states in Q. The

1,1 In the

set @ is represented by the Boolean vector 1
Boolean matrix M, each column represents the starting
state and each row represents the endding state. If the
element m; of the transition matrix M is 1 then the
transition from g; to ¢; is possible, otherwise impossi-
ble. Let Mg be the set of Boolean transition matrices of
Q. The operator vV, A, and & is defined for the matri-
ces. The set My is a monoid under the operator ®. If
the current state is in the sct ¢, then the next possible

states set can be represented by M © ¢.

When the number of output information set I,,, is
finite, by numbering the output information, the output
pattern v, can be represented by a Boolean vector. We
will identify the output pattern with the Boolean vector
when the number of information is finite. In this case,
the output information function g can be represented

by a Boolean matrix G so that 4, = G @ q.

Clearly there exists an isomorphism between the set
of transition map, Ty and the set of Boolean matrices

M. The composition of the isomorphism and the map

Ysys Maps A; into My, i.e. there exist a homomorphis-
m

CAr

F A,

— Mg, s F(s) (14)

5

where F(sys0) = F(s2) © F(s,). This homomorphism

also provides a map

Ay — Mo,

A—s F(A) (15)

Similary, for each v € Iy , we can assign a Boolean

matrix such that v, = (9, ¢) = G(7) © ¢.

Hence, the dynamics of a finite system can be rep-

resented by the following equations:
gk +1) € FOA(k+1) »q(h)
Yo(k) = G(y(k)) © g(k) (16)

where A(k) = (7i(k),o(k + 1)) € A,;s. When the finite
system is deterministic, the dynamics can be represent-

ed by the following equations:

gk +1) = FOk+1) D qk)
w(k) = G(r(k) = qk) (17)

When the system is finite the reachability is easily

checked by the Boolean matrix operation as follows.

Theorem 2.1: TLet Fiy 1= F(A,y). The state g, is
reachable from the state ¢; if and only if there exist a

sequence of matrices Fj, F,_,, - Fy € Fy,, such that

GOFORLO..OF)Og#£0 (18)
3 CONCLUSION

In this paper, TPM model for DEDS is proposed.
The proposed model has symmetric input and output,
hence the interconnection between the DEDS block is
possible. This symmetry of TPM is similar to the C/E
system in (17]. The C/E system is general than our
TPM model. Because of this generality , the analysis
of the C/E system is somewhat complicated. TPM is
a finite state machine which has the symmetric input
and output. The analysis of TPM is easy due to the
specified structure. TPM is a logical model where C/E

system is timed model.

TPM is an extended model of the system used in
the supervisory control theory and stabilizability theo-
ry [1},{2],(15],{16]. Hence, it is expected that the super-
visory control theory and the stabilizability theory are
extended for TPM. The synthesis of TPM controller is

future researches.
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