• Title/Summary/Keyword: discrete state feedback

Search Result 112, Processing Time 0.019 seconds

Design of the Robust Controller for the Discrete-Time Nonlinear System with Time-Delay Via Fuzzy Approach (퍼지 기법을 이용한 시간 지연을 가지는 이산시간 비선형 시스템에 대한 강인 제어기 설계)

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2723-2725
    • /
    • 2005
  • In this paper, a robust $H{\infty}$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-delayed state. Then parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H{\infty}$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique.

  • PDF

DELTA MODULATED CURRENT REGULATOR FOR RESONANT LINK INVERTER (공진형 인버터를 위한 DELTA MODULATED CURRENT REGULATOR에 관한 연구)

  • Hyun, Dong-Seok;Lee, Taeck-Gi;Ahn, Sung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.544-547
    • /
    • 1989
  • The introduction of resonant link inverters has allowed the use of much higher switching frequencies in induction motor current regulators. The resonant link inverter,however, requries the use of discrete time switching strategies. This type of controller,while giving the best possible performance, is difficult to implement, since motor parameters must be calculated or measured. The delta modulated current regurator (DMCR) has been introduced as a controller without additional state feedback. A discrete pulse modulated current regulator which controls load current is introduced in the paper.

  • PDF

Robust $H_{\infty}$ Control of Discrete Uncertain Systems with Time Delays in States and Control Inputs (상태와 제어입력에 시간지연을 가지는 이산 불확실성 시스템의 견실 $H_{\infty}$ 제어)

  • Jong Hae Kim;Hong Bae Park
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.689-694
    • /
    • 1998
  • 본 논문에서는 상태와 제어입력에 시간지연을 가지는 이산 불확실성 시스템의 견실 H/sub ∞/ 상태궤환 제어기 설계문제를 다룬다. 동일한 제어기에 대해서, 파라미터 불확실성을 가지는 시간지연 시스템이 자승적 안정성(quadratic stability)과 폐루프 시스템의 H/sub ∞/ 노옴의 한계를 유지하면서 파라미터 불확실성이 없는 등가의 시스템으로 변형된다. 그리고 주어진 이산 불확실성 시간지연 시스템의 견실 H/sub ∞/ 상태궤환 제어기가 존재할 충분조건과 제어기 설계 알고리듬을 제시한다. 또한 변수치환과 Schur 여수(complement) 정리를 이용하면 구한 충분조건은 LMI(linear matrix inequality) 형태로 쓸 수 있다. 예제를 통하여 제시한 결과의 타당성을 보인다.

  • PDF

On the Linearization of the Discrete-time Nonlinear Systems, $x_{k+1}=G_{u_k}{o}F{(x_k)}$ (비선형 이산 시간 시스템 $x_{k+1}=G_{u_k}{o}F{(x_k)}$ 의 선형화에 관하여)

  • Nam, Kwang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.125-128
    • /
    • 1987
  • We investigate the feedback linearizability of nonlinear discrete-time system s of a specific form, $x_k=G_{u_k}oF(x_k)$ where F is a diffeomorphism and [$G_{u_k}$] forms an one parameter group of diffeomorphisms. This structure represents a class of systems which are state equivalent to linear ones and approximates the sampled data model of a continuous-time system. It is also considered a relationship between linearizability and discretization.

  • PDF

상태궤환을 이용한 2차원 시스템의 극배치

  • 이원규;이상혁
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.8
    • /
    • pp.659-666
    • /
    • 1990
  • Curing recent years, several state-space models describing discrete two dimensional systems are proposed. In this paper, we consider the problem of pole assignment of two dimensional systems using state feedback, based on state-space model proposed by Roessser. The design procedure is seperated into two steps. in thie first step, the sufficient condition for off diagonal matrix of the input transformed system to be zero is derived and in the second step, it is shown that the pole assignment problem of two dimensional systems is divided into the one of two 1-dimensional systems. Finally, a numerical example for illustrating the technique is given.

  • PDF

A Fuzzy-Logic Controller for an Electrically Driven Steering System for a Motorcar

  • Lee, Sang-Heon;Kim, Il-Soo;Jayantha katupitiya
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1039-1052
    • /
    • 2002
  • This paper presents an application where a Fuzzy-Logic Controller (FLC) is used at a supervisory level to implement mutual coordination of the steering of the two front wheels of a motorcar. The two front wheels are steered by two independent discrete time state feedback controllers with a view to optimize the steering slip angles. The functions of the two controllers are tied together by way of a FLC. Because of the presence of unmodelled dynamics and disturbances acting on the two sides, it is difficult to achieve the desired performance using conventional control systems. This is the primary reason that FLC is emploged to solve the problem. The results show that the implemented system achieved desired coupling between the two independent systems and thereby reduces the difference between the two steered angles.

A Control Strategy for Systems with Single Flexible Mode to Reduce Residual Vibration (단일 유연 모드를 가지는 시스템의 잔여 진동을 최소화하기 위한 제어 전략)

  • Shin, Young-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.91-100
    • /
    • 2007
  • Many manufacturing devices must execute motions as quickly as possible to achieve profitable high-volume production. Most of them have devices having flexibility and a time delay of one sampling is added to the plants when they are controlled by fast discrete controllers, which brings about non-minimum phase zeros. This paper develops a control strategy that combines feedforward and feedback control with command shaping for such devices. First, the feedback controller is designed to increase damping and eliminate steady-state error. Next, the feedforward controller is designed to speed up the transient response. Finally, an appropriate reference profile is generated using command-shaping techniques to ensure fast point-to-point motions with minimum residual vibration. The particular focus of the paper is to understand the interactions between these individual control components. The resulting control strategy is demonstrated on a model of a high-speed semiconductor manufacturing machine.

Robust $H_$ Control of Continuous and Discrete Time Descriptor Systems with Parameter Uncertainties (파라미터 불확실성을 가지는 연속/이산 특이시스템의 견실 $Η_2$ 제어)

  • 이종하;김종해;박홍배
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.251-263
    • /
    • 2003
  • This paper presents matrix inequality conditions for Η$_2$control and Η$_2$controller design method of linear time-invariant descriptor systems with parameter uncertainties in continuous and discrete time cases, respectively. First, the necessary and sufficient condition for Η$_2$control and Η$_2$ controller design method are expressed in terms of LMI(linear matrix inequality) with no equality constraints in continuous time case. Next, the sufficient condition for Hi control and Η$_2$controller design method are proposed by matrix inequality approach in discrete time case. Based on these conditions, we develop the robust Η$_2$controller design method for parameter uncertain descriptor systems and give a numerical example in each case.

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.

Active Damping Method Using Grid-Side Current Feedback for Active Power Filters with LCL Filters

  • Tang, Shiying;Peng, Li;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.311-318
    • /
    • 2011
  • LCL filters installed at converter outputs offer a higher harmonic attenuation than L filters. However, as a three order resonant circuit, it is difficult to stabilize and has a risk of oscillating with the power grid. Therefore, careful design is required to damp LCL resonance. Compared to a passive damping method, an active damping method is a more attractive solution for this problem, since it avoids extra power losses. In this paper, the damping capabilities of capacitor current, capacitor voltage, and grid-side current feedback methods, are analyzed under the discrete-time state-space model. Theoretical analysis shows that the grid-side current feedback method is more suitable for use in active power filters, because it can damp LCL resonance more effectively than the other two methods when the ratio of the resonance and the control frequency is between 0.225 and 0.325. Furthermore, since there is no need for extra sensors for additional states measurements, this method provides a cost-efficient solution. To support the theoretical analysis, the proposed method is tested on a 7-kVA single-phase shunt active power filter.