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Abstract

it

We investigate the feedback linearizability of nonlinear discrete-time systems of a specific form,

Xy = G,°F(x,), where F is a diffeomorphism and {G,“] forms an one paramecter group of

diffeomorphisms. This structure represents a class of systems which are state equivalent to linear oncs

and approximates the sampled data model of a continuous-time system. It is also considered a relation-

ship between linearizability and discretization.

1. Introduction

Linearization of nonlinear systems has been one of
the most interesting research topic in the nonlinear sys-
tems analysis. Recently, there has been a considerable
development in the study of linearization of discrete-time
systems {3,6,7], as well as of continuous-time systems
[2,4,5,8]. Grizzle [3] and Lee & Marcus [6] derived in an
implicit manner the necessary and sufficient conditions for

the feedback linearizability of the general discrete model,

Xepn1 = H(xp,u). (1.1)

In the case of continuous-time affine systems, the
characterization of linearizability is given by in terms of
vector fields. Correspondingly, if the dynamics of a
discrete-time system are represented by a composition of
diffeomorphisms, then the linearizability may be character-
ized by the properties of diffcomorphisms. Hence, it may
be interesting to study the linerizability of the system (1.1)
when the map H :M xR —M has a certain structure. In
this work, we investigate the linearizability of the discrete

model
Xey1 = Gul°F(xl). X € M, useR,

(1.2)

where F is a diffeohwrphism from M to M and {G, ) er

is an one-parameter group of diffeomorphisms of M.

In practice, most discrete-time systems arise by sam-
pling continuous-time systems. Hence, in the aspect of
applicability, the validity of a discrete model may be deter-
mined by its proximity to the sampled data model of a
continuous-time system. It will be shown later that the
discrete model (1.2) is reasonably good in the sense that
its trajectory converges to that of a continuous-time affine
system. Notice that the system structure like (1.2) is more
general than that of the form x,,y= f(x) + u, g (x),
since this system belongs to the class of systems of the
form (1.2). Finally, we also investigate the effects of sam-

pling on the linearizability.

2. Preliminaries and Definitions

Let M be a smooth (C™—differentiable) n-

dimensional manifold. C"(M,R) denotes the space of
r—times continuously differentiable functions from M to
R. Let T(M), T'(M) denote the tangent bundle of M
and its dual space, respectively. Let T, M denote a tangent
space at x e M. Given A(t,x)e T, M for each te R, we

denote by @(A ; ¢, to)po the solution ¢(t) e M of

idS:L = A(t,9), 000 = Po
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and we often write ®(A;1,0)pg as ®A(py). We denote by

%' the i-th component of a coordinate map x and by DF

the jacobian of amap F.

Definition 2.1: Let 6 :U;— U, be a local homeomorphism
of class at least C!. For a vector field X over an open set
V of M, we define AdgX to be a vector ficld on
G (Uyn V) such that

AdoX (p) = D |1, X (57 '(p)).
Note that for a vector field X on M,
@ (p) = 5e0fes'(p).
[Ad{,x,Ad{,x}= AdS [X,Ad{,”‘X} for j> i
We utilize the following theorem later.
Theorem 2.1:{9] A C™ distribution A on M is involutive if
and only if the ideal 7 (A) is a differential ideal, where
I(A) = {we T*(M):® annihilates A }.
Consider a nonlinear discrete system
Teay = H{xye uy) @n

where x, €M, yu e R, H(:,"):MXR - M is a smooth

function of both arguments, and H (x,.0) = x,.

Definition 2.2: The discrete system (2.1) is said to be state
equivalent to a linear system if there exists a C™-
diffeomorphism T :M —R" which transforms the system

(2.1) to a linear controllable system,
2y = Az + by (22)

in Im(T). ¥ T is onto R", we say that (2.1) is globally

state equivalent to a linear system.

Definition 2.3: The discrete system (2.1) is said to be
(locally) feedback equivalent to a linear system if there exists

a function o(,) € C*(MxR,R), ﬁ"—‘ﬁaﬁl £ 0 for all x
v

in a neighborhood U, of x, such that the closed loop sys-

tem with u, = a{x;, v;) is state equivalent to a linear sys-

tem.

1f a system is feedback equivalent to a linear system; then
we call it a feedback linearizable system. According to the
above definitions, a system is feedback linearizable if there
exists a nonlinear feedback such that the closed loop sys-
tem is linearizable by a coordinate transformation map. In
other words, if the closed loop system for a certain feed-
back is differentially equivalent to a controllable lincar sys-
tem, then the system is feedback linearizable.

3. A Discrete-time System Model
Considering the linear system (2.2), one may

observe that it consists of noncommuting two maps,

W(z) = Az and ¢,(2) = 2+ bu,. Therefore, one may

express (2.2) equivalently as
Zrey = 04 oW(2e). 3.1

Note that the collection {§, ), » forms an one-parameter

group of diffeomorphisms of R ", i.e.,
Qu.’ru,(z) = Qu("h,(z) and §o(z) = 2. (32)

Suppose that the system (2.1) is state equivalent to
the linear system (2.2) and z, = T (x;) is the linearizing
coordinate transformation map. Transforming the linear

system (3.1) back by x, = T~(z,). we obtain
Tt = T (042 )) = §u,oW(xe), (33)

where §,, = T "o, oF and §= T 'eyeT. Therefore, it
follows from (3.1) and (3.3) that

H(xe ) = §,,°00x0). (34)

Here, one can easily verify that if a diffecomorphism ¢,
satisfying the group property (3.2) is equivalent to a
diffeomorphism 6,,‘, then &": also satisfics the group pro-
perty. Thus, we may conclude that if a system is state
equivalent to a linear system, then it consists of two
diffeomorphisms: One of which depends on input, while
the other does not. Further, the former forms an one-
parameter group of diffeomorphisms for different values of
the input. Based upon the previous observation, we res-
trict our concern to the systems of the form (1.3} in the
study of linearizability.

The validity of the discrete model (1.3) also can be
justified from the fact that the discrete-time system (1.3)
approximates the sampled data model of a continuous-time
system

= f(x)+ ug(x), x{9 = xo (3.5)
The exact solution of (3.5) is given by
X(t) = B(f 51, toyoD(uAday: .18 i 1+ ta)(x0) (3.6)
( see {1]). Notice that uAd@U;’,,',o,g is a time-dependent
vector fields on M. If ¥(=1t—ty) is sufficiently small,
then fixing T = 1, we can approximate uAdegr;1 )8 for
te ftg 1) by u()Adg(s,_r,198 which is time-independent
over the interval [¢q,t). However, since
Du(DAdey; 1,108+ 1 10
= B(fi—1,t0)eD(ult)g: ¢, te)o®(f ;8. t0), (3.7)
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the solution (3.6) can be approximated by
x(8) = D(u(t)g; t.to)oD(f ¢, tg)(xg). (3.8)
Thus, if the sampling period ¢ is sufficiently small, the
states (x; }, . 5+ of the system
Xeer = B0 (xy), 39

where u, = u((k+1)0) for ke z*, approximates the sam-
pled points of the system (3.5). In other words, for any

t; > tg and piecewise continuous input u(f),

['//n “
lim IT (@%@ }(xq)
t0k=1

= O(f 517, t0)oP(uAd s v, 108 i 4 - to)(X0). (3.10)

where [a] implies the largest integer less than a.

4. Main results
Consider the following system

Xpe1= GuoF(xy), xeM, weR, 4.1
where F € C™(M , M) is a diffecomorphism with x, being a
fixed point of the map F, and the collection (G, ), g is an
one-parameter group of diffcomorphisms of M. Then,
locally we can express G, (x) as

Gy (x) = BE(x) = B (x), (42)

where g is the infinitesimal generator of G,,.

Theorem 4.1 The system (4.1) is state equivalent to a

linear system if and only if

iy (g, Adpg,
a neighborhood of x,,

<+, AdET g} are lincarly independent in

ii) [g.Ad;g]= 0, i=12, ---,n-1.

Proof. Necessity is straightforward since a linear controll-
able system on R " satisfies i) and ii).
(Sufficiency) We define amap WY :R"xM > M by
n-1 n-2
PED, EM),x) = Bl ot o

Let x(CED,. EM) = W(EM,. EM) %) . It follows
from ii) that for 1< j< i< n—1,

o fu(x)

[Ad;’g, Adlg ]: Adf [g, Adi g ]: 0. (4.3)

Therefore, for a p in a neighborhood of 0in R ",

$E0) = 4dE sy, 1S s @44)
From i), rankDy(0)=n. Thus, ¥ is a local

diffeomorphism mapping 0 to x,. Choosing x" as a coor-

dinate change, we obtain that

Erar = X () = X7 10Gy oxox F ox(8r).  (45)

By (4.3), there exist real constants ay, a3, ..., a, such
n .
that Adfg = ¥, a;Adi 'g. Therefore,
i=1
Dy 'DFDy = (DX)"'DFDy, (4.6)
1
= [Adﬁ'lg, . .g} [Ad;g, o ,Ang]= A,
where
a, 10 ... 0
a".—l Q 1 ---0
A=l oo
a, 00 --- 1
a 00 --- 0

Hence, x~ loFox(Ex) = AE,. Similarly,

uy Adl..lg

X 'eGyox(p) = @ ).

Note that
Ad,g(p) = DX 'g(x(p))

= [Ad;—*g, R T'g(x(p)) = b,

where b = [0,0,...,0,1]7. Hence, rewriting (4.4), we

obtain

Eepr= AL + buy. W

Corollary 4.1 The system (4.1) is globally state equivalent
to a linear system if and only if

iy (g.Adrg, - - -, Adp~ g ) are linearly independent,

i) [g,Ad;'g]=o. i=1,2,--,n-1,
iiiy the vector fields {g, Adrg, - -, Adf~'g) are com-
plete,

iv) M is simply-connected.

Proof. It suffices to show that the linearizing coordinate
transformation map T is onto R". Since this argument is

similar to the one in [2], it is omitted.

Theorem 4.2 The system (4.1) is locally feedback lineariz-
able if and only if

iy {g, Adrg, - -, Adﬂ“'g] are linearly independent in a
neighborhood of x,,
i) (g, Adrg, - -, Adf~?g ) are involutive.

Proof. Omitted
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5. Linearizability and Sampling

In this section, we consider the relationship between
linearizations and discretization. We are concerned with
the problem of whether a discrete-time system is lineariz-
able, if it is obtained through sampling of a linearizable

continuous-time system.

It is shown in [3} ihat the feedback linearizability is
not preserved under sampling. That is, the discrete system
obtained through sampling of a feedback linearizable sys-
tem is not, in general, feedback linearizable. This may be
illustrated by the following observation: It is involved in
the process of feedback linearization the cancellation of
nonlinear term which is is a function of time. However,
since the input u to the discretized system must be con-
stant over each sample period, it is impossible to cancel
out the time.varying nonlinear term with such a piecewise

constant input u;.

But, we claim that the linearizability via state coordi-
nate change is preserved under discretization. That is, if a
continuous-time system is state equivalent to a lincar sys-
tem, then the discrete-time system obtained by pcriodic
sampling is also state equivalent to a lincar system. For

the proof, consider the following:
Specifically, suppose that the system
x = flx)+ ug(x) 5.1

state equivalent to a linear system and T:M —R”" is a

linearizing coordinate transformation map. Then,

e = TO! "1z = o]0, (52

By assumption, we obtain for some controllable pair
(A.b).
Adr(f + upg)(m) = DT L (f + uy g)(x;)
= Az, + bu, (5.3)
Hence, it foliows from (5.2) and (5.3) that
Az + b
e = 07Tz,

= Azy + buy, (5.4)

1
where A =¢* and 6= J' eA0-%p g1,
0

6. Conclusion

In the study of feedback linearization, we consider the
systems of the form x, = G, °F(x), where F is a
diffeomorphism and [G,,. },,‘Ea forms an one parameter

group of diffeomorphisms. This model not only represents
the class of linearizable systems via state coordinate
change, but also can be obtained from a continuous time
system under a reasonably good approximating assump-
tion. The linearizability conditions obtained here are simi-
far to the continuous ones. We also have shown that the
state equivalence to a linear system is preserved under

discretization.
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