• Title/Summary/Keyword: discrete solution

Search Result 476, Processing Time 0.027 seconds

A New Acceleration Method of Additive Angular Dependent Rebalance with Extrapolation for Discrete Ordinates Transport Equation

  • Park, Chang-Je;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.314-322
    • /
    • 2002
  • A new extrapolation method is developed and applied to the additive angular dependent rebalance (AADR) acceleration for discrete ordinates neutron transport calculations. With this extrapolation, the convergence of AADR solution for distinct discretizations between the high- order and low-order equations is remarkably improved and thus the “inconsistent discretization problem” is resolved. Fourier analysis is also performed to find the optimal extrapolation and weighting parameters, which give the smallest spectral radius. The numerical tests demonstrate that the AADR with extrapolation works well as predicted by the Fourier analysis.

MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS

  • Eloe, Paul;Jonnalagadda, Jaganmohan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.977-992
    • /
    • 2019
  • Mittag-Leffler stability of nonlinear fractional nabla difference systems is defined and the Lyapunov direct method is employed to provide sufficient conditions for Mittag-Leffler stability of, and in some cases the stability of, the zero solution of a system nonlinear fractional nabla difference equations. For this purpose, we obtain several properties of the exponential and one parameter Mittag-Leffler functions of fractional nabla calculus. Two examples are provided to illustrate the applicability of established results.

A Tool for Optimizing Simulated Discrete Variable Stochastic Systems: SIMICOM

  • Lee, Young-Hae;Azadivar, F.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.107-118
    • /
    • 1986
  • A heuristic algorithm (SIMICOM) has been designed and tested for optimizing simulated stochastic systems whose performances are functions of several discrete decision variables. The approach adopted utilizes an integer complex method coupled with techniques of establishing confidence intervals for the system's responses. It can handle a general class of optimization problems that could be constrained or unconstrained. In constrained cases, the constraints could either be explicit analytical functions of decision variables or be expressed as other responses of the simulation model. In addition to obtain a reasonably accurate solution, the economic aspect of obtaining the solution has also been taken into consideration.

  • PDF

Numerical Analysis of Gas Flows in Microchannels in Series (직렬 미소채널 기체유장의 수치해석)

  • Chung Chan Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.221-231
    • /
    • 2004
  • A kinetic theory analysis is made of low-speed gas flows in a microfluidic system consisted of three microchannels in series. The Boitzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. For the evaluation of the present method results are compared with those from the DSMC method and an analytical solution of the Navier-Stokes equations with slip boundary conditions. Calculations are made for flows at various Knudsen numbers and pressure ratios across the channel. The results compared well with those from the DSMC method. It is shown that the analytical solution of the Navier-Stokes equations with slip boundary conditions which is suited fur fully developed flows can give relatively good results. In predicting the geometrically complex flows up to a Knudsen number of about 0.06. It is also shown that the present method can be used to analyze extremely low-speed flow fields for which the DSMC method is Impractical.

  • PDF

Design of State Feedback Controller for Fuzzy Systems: Intelligent Digital Redesign (퍼지 시스템을 위한 샘플치 데이터 상태 피드백 제어기 설계: 지능헝 디지털 재설계 접근)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2480-2482
    • /
    • 2005
  • This paper presents a complete solution to intelligent digital redesign problem (IDR) for sampled-data fuzzy systems. The IDR problem is the problem of designing a sampled-data state feedback controller such that the sampled-data fuzzy system is equivalent to the continuous-time fuzzy system in the sense of the state matching. Its solution is simply obtained by linear transformation. Under the proposed sampled-data controller, the states of the discrete-time model of the sampled-data fuzzy system completely matches the state of the discrete-time model of the closed-loop continuous-time fuzzy systems are completely matched at every sampling points.

  • PDF

Optimum RC Member Design with Predetermined Discrete Sections (단면 데이타 베이스에 의한 RC 부재의 최적설계)

  • 최창근;곽효경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.55-60
    • /
    • 1988
  • This paper concentrates on the development of simplified and effective algorithm for optimum reinforced concrete(RC) member design. After constructing the data base of predetermined RC sections which are arranged in the order of increasing resistant capacity. Then, the relationship between the section identification numbers and resistant capacities of sections is estabilished by regression and it can be used to obtain the initial solution(section) which satisfies the design constraints imposed. Assuming that there exists the optimum section near the initially selected one, the direct search is conducted to find the discrete optimum solution. The optimization of the entire structure is accomplished through the individual member optimization.

  • PDF

Solution of the Liner Free Surface Problem by a Discrete Singularity Method (집중특이점분포법을 이용한 선형자유표면문제의 해석)

  • Gang, Chang-Gu;Yang, Seung-Il;Lee, Chang-Seop
    • 한국기계연구소 소보
    • /
    • v.4 no.1
    • /
    • pp.29-42
    • /
    • 1981
  • In this paper, it is demonstrated that, with the distribution of lowestorder concentrated (discrete) singularities of delta function nature, the solution to the linear free surface problem can be obtaianed with a remarkable degree of accuracy. The linearized bounday valve problem is formulated subject to boundary conditions for the determination of strengths of singularities; the simple sources above (not on) the free surface and the vortices on the body surface. Three sample calculations were performed; the flow about a submerged vortex of known strength, the flow past a submerged circular cylinder, and the flow around a hydrofoil section. The convergence of the numerical procedure is achieved with a relatively small number of elements, The final results are compared with those of the publi¬shed works, and are considered very satisfactory.

  • PDF

Solution of the Linear Free Surface Problem by a Discrete Singularity Method (집중특이점분포법(集中特異點分布法)을 이용(利用)한 선형자유표면문제(線型自由表面問題)의 해석(解析))

  • Chang-Gu,Kang;Seung-Il,Yang;Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 1981
  • In this paper, it is demonstrated that, with the distribution of lowest order concentrated(discrete) singularities of delta function nature, the solution to the linear free surface problem can be obtained with a remarkable degree of accuracy. The linear boundary value problem is formulated subject to boundary conditions for the determination of strengths of singularities; the simple sources above(not on) the free surface and the vortices on the body surface. Three sample calculation were performed` the flow about a submerged vortex of known strength, the flow past a submerged circular cylinder, and the flow around a hydrofoil section. The convergence of the numerical procedure is achieved with a relatively small number of elements. The final results are compared with those of the published works, and are considered very satisfactory.

  • PDF

Acceleration of the Time-Dependent Radiative Transfer Calculations using Diffusion Approximation

  • Noh, Tae-Wan
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.151-152
    • /
    • 2004
  • An acceleration technique combined with the discrete ordinates method which has been widely used in the solution of neutron transport phenomena is applied to the solution of radiative transfer equation. The self-adjoint form of the second order radiation intensity equation is used to enhance the stability of the solution, and a new linearization method is developed to avoid the nonlinearity of the material temperature equation. This new acceleration method is applied to the well known Marshak wave problem, and the numerical result is compared with that of a non-accelerated calculation

  • PDF

STABILITY OF POSITIVE PERIODIC NUMERICAL SOLUTION OF AN EPIDEMIC MODEL

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • We study an age-dependent s-i-s epidemic model with spatial diffusion. The model equations are described by a nonlinear and nonlocal system of integro-differential equations. Finite difference methods along the characteristics in age-time domain combined with finite elements in the spatial variable are applied to approximate the solution of the model. Stability of the discrete periodic solution is investigated.

  • PDF