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Abstract

A heuristic algorithm (SIMICOM) has been designed and tested for optimizing simulated stochastic
systems whose performances are functions of several discrete decision variables. The approach adopted
utilizes an integer complex method coupled with techniques of establishing confidence intervals for the
system’s responses. It can handle a general class of optimization problems that could be constrained or
unconstrained. In constrained cases, the constraints could either be explicit analytical functions of
decision variables or be expressed as other responses of the simulation model. In addition to obtain a
reasonably accurate solution, the economic aspect of obtaining the solution has also been tazken into
consideration,

1. Introduction

Simulation is often used for evaluation of systems for given decision policies. In some applications
the outcomes of various policies are compared through muitiple comparisons or design of experiments
employing computer simulation as the means of experimentation. However, relatively fewer attempts
have been made to use simulation as a means of optimization. If a decision policy is defined as a set of
values for several decision variables of the system, it is easy to see that simulation can be efficiently
used as a means of optimization of such a system. In other words, simulation response can be used as an
objective function of an optimization problem. To clarify this, consider the following example.

A multiuser computer system under interactive operating environments in which each user may
input different classes of commands such as edit, compile, logon, logoff and several file manipulation
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commands. Each class of command- is characterized by its distribution of input-message length, CPU
processing time, output-message length, and think times following each output-message. The operation
of such a computer system for a given number of processors, terminals, and disk drives can be modeled
through a computer simulation to minimize the system’s response time (to maximize the throughput)
within the available budget. '

In optimizing the system such as above, one may be interested in finding the optimum values for the
controllable variables such that the total operation of the system in terms of a given measure of effec-
tiveness is optimized. In order to optimize such simulated systems a systematic procedure in the form of
an algorithm is needed; it must be capable of interacting with the simulation model and obtaining the
optimal values for the decision variables.

Most of the algorithms developed in the literature can only be applied to systems whose decision
variables are represented by continuous variables (eg., SAMOPT by Azadivar [1] and Response Surface
Methodology [3]. [4]. [7].[21]). In some cases for dealing with the discrete variable simulation-
optimization problem, rounding off of the continuous optimum was used [4], [23], which can lead
to a point which may or may not represent the real discrete optimum [8].

The algorithm discussed in this paper deais with the optimization of stochastic simulation models
whose control variables are discrete.

2. Statement of the Problem

It is known that the result of the evaluation of the response function of a simulated system for a
given set of values for the decision variables is just one realization of a stochastic process. Let Z(X)
denote the random variable representing the response of the simulation model for a set of values for the
decision variables represented by vector X. Also let H(z/X) be the cumulative probability distribution
function for the random variable Z such that

H(z/X) = P[Z(X) = z] (2.1)

Obviously characteristics of H are functions of X and the structure and stochastic behavior of the simula-
tion model. The expected value of Z{X) can be expressed as

o

Elz/x1=| _ 2aHEX) (22)

E[Z/X} is called the conditional expected value of Z for given X. Now if a function Y(X) exists such
that
Y(X)=E[Z/X] forallX (2.3)
then Y(X) is called the theoretical regression function of Z(X).
For stochastic functions, optimization often means the optimization of their expected value. In
other words, those values of the decision variables for which the expected value of the response is

optimized are of interest.
The problem under study could be formulated in its general form as follows:

Min (Max)’ Y(X) = E[Z(X)]

Subject to

§(X)= ¢,  j=12..m (24)
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where
X is a vector consisting of n discrete valued decision variables,
Z(X) is the random variable corresponding to the observation of the simulated systems,
Y(X) is the unknown theoretical regression function of Z(X) and
gj(X)- is 4 set of m constraints on X .

In order for the algorithm to work, it must employ an optimum seeking search method that can con-
verge 10 the optimum of Y(X) by making observations on Z. In order to apply the proposed algorithm
the following requirements should be met:

i}  The theoretical regression function Y(X) is a real-valued function.

if)  There exists a finite constant M such that

Var{Z(X)] = Mforall X

i) Elements of X are discrete valued variables.
3. Development of the Algorithm

Among the optimization procedures available, the simplex method [22] and the complex method
(constrained-simplex) {6] seem to have better potentials for dealing with the discrete optimization
problems through simulation. The reasons are a) starting from a point far away, the complex search
approaches rapidly to the optimum [25], b) It can be modified relatively easity fiom its continuous
version to discrete optimization [2], c) its constrained version is available so that it can be applied to
discrete optimization problems with all types of constraints and d) it does not need an analytical expres-
sion of the objective function. Consequently this method has been used as a basis for development of the
algorithm in this paper.

The complex method of Box [6] has been modified by Beveridge and Schechter {2] for discrete
optimization. The following difficulties may occur when using the modified complex method of Be-
veridge and Schechter for discrete optimization problems,

a) The method may converge {0 a nonopiimal point on oI near a resolution valley as illustrated in
[8].

b) The search may become stranded if the centroid of the remaining vertices of the complex is suffi-
ciently close to the point to be rejected, in which case the new vertex coincides with the originally
tejected vertex. This particular difficulty often arises when the method atterpts to move along a ridge
or a constraint and the complex becomes very flat and long, or the point is inside the remaining vertices.

¢} A similar stranding of the search may occur if the projected point is rejected and the retracted
poiat coincides either with the first projected point or the point which was originally rejected. This Jast
difficulty arises when there is no better point in the projected direction.

3.1 Modifications of Integer Complex Method
In order to prevent the search from becoming stranded because of the difficulties shown above the
method of regeneration of seasch is proposed by Glankwahmdee et al. {8].

As reported in [20] and {24] the complex method is affected considerably by the scale and orienta-
tion chosen for the first complex. With a stochastic function the optimum of which is known we had a
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similar experience. That is, when we chose the points in the initial complex near the boundry of the
feasible region, sometimes the procedure did not converge to the optimum. To overcome this situation
in this paper the nonrandom method rather than the random method of setting the initial complex i
adopted. '

Nonrandom Selection of the Imitial Complex

Using an initial feasible point that does not lie on any constraint bound, a set of 2n+1 points can be
generated as the initial complex by following a procedure similar to the one in [20]. But employing
2ntl vertices in the initial complex usually requires too many evaluations of the simulation model
before it converges to the optimum. To utilize the allowable simulation runs more economically this
nonrandom method was modified and only ntl1 points were included in the initial complex. These
points are located by using the uniform search as follows.

First, a central point of the feasible region which satisfies the bound constraints, is selected. The
coordinates of this point can be obtained as follows:

x = <(c;—-a9)/2>

where c; and a; are upper and lower bounds on variable x;, respectively. The notation <z>> represents the
nearest integer value to z.

Then the tange of each variable is divided info two equal portions resulting in a total of 2% equal
regions. The centers of the regions including the central point of the feasible region are evaluated until
n+1 points necessary to the injtial complex are selected (See Figure 1),
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Figure 1. Nonrandom Selection of n+1 Points for Initial Complex
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Figure 2. Searching Arcund the Final Optimum

Searching Around the Final Optimuem

An option is provided to perform an additional search around the final optimum for the purpose of
fine tuning. The proposed procedure is as follows {See Figure 2):
1) LletP,=(d, d;,...dj.-....d,) be the final optimum as obtained by the complex search.
2) Denote Py, Qg and S such that
Py = (dy.dy...ditl,...dy)
Qx = (d, d; ,...,dk—l weelp)
S (5157 e Sk anensSpy)
where S is a gradient vector whose components are +1, —1 o1 0.
3) Letk=t1
4} Evaluate Pi. It Py is a better point than P, then let s = +1 and go to step 6. Otherwise go to step
5.
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5)
6)
7

8)
9)

Evaluate Q. If Qy is a better point than Py, then let s = —1, otherwise let s, = 0. Go to step 6.
If k = n, go to step 7. Otherwise let k =k+1 and go to step 4,
If all components of S are equal to 0, then go to step 9. Otherwise evaluate point R such that

R=P,+8S

where the i-th component of R = d; + ;.
Select the best point among evaluated feasible points as the new final optimum. Go to step 3.
Evaluate the remaining feasible points in the unit neighborhood of P,. If P, is the discrete local
optimum, STOP, Otherwise, select the best point and go to step 3.

3.2 Proposed Algorithm

The fina] version of the modified complex search algorithm for discrete optimization problems using

simulation (called SIMICOM, SIMulation-optimization by Integer COmplex Method) is as follows:

1)

2)

3)

4)

Construct the initial complex consisting of n+l vertices according to the modified nonrandom
method. -
Arrange all the vertices in the order of improving mean response,
V(1), V(2), V(3), ....... . V(K); K=ntl
and designate VR as a vertex with the least favorable mean response.
The centroid of the complex consisting of all vertices except VR is defined as

VM = {vmy,i=12,..n}

k
;= [Z vy — ;] f(K-1), i=12,..n
i [k=1 ki 11

where v, ; is an i-th element of k-th vector point and vr; is the i-th element of VR,
Let S be a vector pointing from the rejected vertex towards the centroid VM. Components of S are

8§ = VIN§ — VIj, i=12,..n
A new vertex VP = {vp; ;i=1,2,...,n} can be defined as
vp; = vry T < 8*si/ Ax; > ® Ax;, i=12,..n

where 8 is the reflection coefficient and Ax; is the shortest equal distance between two discrete
points on a line parallel to the x; axis. If VP violates a bound constraint on any variable, the corres-

ponding coordinate is set equal to the violate constraint bound.
Replace V(1) by VP and compare the mean response at VP, Y(VP), to the mean responses at all

other vertices of the complex. Two possible results are

a) Y(VP) is not the least favorite vertex of the complex. In this case VP is acceptable; return to step
2. .

b) Y{VP} is the least favorite point of the complex. In this case reject VP and locate a new VP by

retracting back toward VR one-half the distance to VR. Apply the retraction step, even if this

point should coincide with another vertex of the complex. However, if VP coincides with VR

without locating a better point, go to step 5. Otherwise restart step 4.
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5) Restore VR and select the next worst point of the compiex, designate this point as VR, and return
to step 3.

6) The search terminates when: :
a) The complex collapses to one vertex. This point is then chosen as the optimum.
) V(K) is selected in step 5 and no better point can be located. In this case the best point of the
complex is identified as the optimum.

7) (Option) Search around the final optimum to find a more accurate optimum.

The evaluation of the performance on several test problems showed that the choice of § = 2 pro-
duced good results [22],

33 Constrained Problem

Consider the problem of minimizing a system response f{X) from the simulation model subject to
a set of constraints as follows:

Min f(x)

subject to a4 <x; < , i=12,.n (3.1)
gj(X) =b , i=L2,..m (3.2
M) <d L k=12,.p (3.3)

where X is the vector of x;’s,i=1,2,....,n, The constraints, 3 <x; <¢;, i=1,2,...,nin(3.1) are the upper
and lower bounds on each variable. These bounds arise from prior knowledge of the systern, equipment
limitations, and specifications on the product or process, The constraints gj(x).j =1...min{3.2)are
explicitly known deterministic functions in terms of the independent variables of X. The constraints
hy (X} in (3.3) are implicitly known stochastic functions or other responses from the system that must
be evaluated via computer simulation.

Due ta the stachastic nature of hy(X), the above representation of constraints for y(X) is not
mathematically correct, because the left hand sides are random variables while the right hand sides are
deterministic values. These constraints can better be stated in conjunction with a probability assigned to
the possibility of their violation.

This can be done by expressing them as

Min (X)
subject to =X =G , 1=1,2,..n
(X} =b; . j=1.2,..m
P (X)<dg] =1 -6 L k=12...p (3.4)

where $ (0 <. < 1) is the maximum probability of violating constraint k. k = 1,2,.....p.

Ta deal with this type of stochastic constraint which in stochastic programming is called chance-
constraints, two different approaches, quantile approach [26], [10] and characteristic function ap-
proach [9], have been suggested in the literature. In this research the concept of quantile approach was

adopted.
The stochastic constraints in {3 .4) can be written as either
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HO(X)<dp for P(X)<di] 21 By (35)

or

HLkO =q,  for P(X)=dy} =1 —By (3.6

where HU(X) and HL(X) are the upper and lower limits, respectively, on the response hi(X) with
2B, confidence level.

As shown above, there may exist three different kinds of constraints; bound, explicit and implicit.
For the proposed SIMICOM algorithm to work for the constrained problems the following should be
taken into account.

Selection of the Initial Complex
To construct the injtial complex, 2™1 alternative points obtained from 27 subregions plus the

central point of the feasible region are checked against all explicit constraints to eliminate those which
are infeasible. Only the remaining points are evaluated via simulation to select' n+1 points for the initial

X3

Xy

“Qi . Rejected Point
P; : Selected Point for Initial Complex
g{ (X),¢; : Constraints

Figure 3. Selection of the Remaining Points for the Initial Complex in Constrained Problem
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complex. When the selected points are less than n+1 points necessary for constructing the initial com-
plex with the above procedure, the remaining points are selected according to the following procedure
(See Figure 3). '
i} Let Py = (dg1, dga .y -dgn) be the best among p selected points and Qj = (qj1, qj2 -
....Qjp) be the i-th rejected point in the process of constructing the initial complex.
i) Letk=1.
iif) Let P =<{P, + Q)f2>
where the j-th coordinate of Py is <(do; + qi 2>
Evaluate all explict and implicit constraints at Py. If all are satisfied, select that point. Otherwise,
move one-haif distance to P, such that

new Py = < (P, +old Py)/2 >

Repeat this process until Py is feasible.

iv) Ifk = n+l—p, then stop. Otherwise, let k = k+1 and go to step (iif).

Similarly, in the reflection step of integer complex algorithm, it the new VP violates any explicit
or implicit constraint, it is repeatedly replaced by a new point located one-half the distance to the
centroid of the remaining n points, VM, until a feasible new point is found. In the retraction step the
similar procedure is applied until an acceptable point is obtained.

4. Comparison of Alternative Stochastic Systems

The suggested algorithm is based on taking the next step according to the result of comparing the
responses of alternative systems in the previous step. Since the objective function, being the response of
the simulation model, is often a stochastic function of decision vatiables, comparing its mean values
based on one observation at each alternative is often not conclusive. Such comparisons may result in
the selection of a wrong alternative or a wrong direction for the next step. Sometimes even the average
of several observations is not sufficient to offset the random characteristics of the response.

Under certain conditions it is possible to select between two alternatives (pointsj . ..« high level of
confidence. Suppose that in addition to the mean response at each point, confidence intervals on the
mean are also evaluated around the mean at a given level. Obviously the range of these intervals will be
natrower for longer simulation runs. Let the lower and upper confidence limits on the response of the
system at point X at 8 confidence level be represented by ZL(X) and ZU(X). Now if after comparing the
responses at two points it is found that ZU(X,) < ZI(X, ) we can be almost sure (with a certain pro-
bability) that point X, is better than point X,. If this conclusion is made based on a relatively short
simulation run, there will be no need to continue running the model for any longer for the unfavorable
point. However, if such a conclusion cannot be reached, running the model for a longer period that
results in narrower confidence intervals may provide a better chance for such a conclusion.

In the development of the proposed algorithm for evaluating the upper and lower limits mentioned
above, a sequential procedure is adopted. According to this procedure, initial, terminal and incrementat
run lengths are specified by the user. For each point, first the model is run for the initial run length. If
a conclusive decision can be made based on this run length, the run is not continued any longer. How-
ever, if the result is inconclusive, the run is incremented by the specified incremental run length and the
result is evaluated again. This process continues until either a conclusive result is obtained or the un
length reaches its maximum aflowable value. In the latter case only the means of the responses are
compared,
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5. Construction of Confidence Intervals

The batch means method for constructing the confidence intervals on the mean responses of simula-
tion models is well described in [11], [13]. Let Zj(m) (G = 1,2,..k) be the sample mean of the m ob-
servatjons in the j-th batch and let Z(k,m) be the grand sample mean of k batches. Then we can use the

following to construct an approximate 100(1-8)% confidence interval (cd.) for p;

Zkm)ttyy gg2 V& [Zkm)] SN RS

where ty 1 172 is the 1-8/2 point for a t distribution with k-1 degrees of freedom and &2 [Z(k,m)] is
the estimate of variance of Z(k,m).

The problem with the current procedure using the batch means method is that one is almost never
sure that the number of observations collected has been sufficiently large. To alleviate this preblem to a
certain extent a modified procedure is suggested below.

In using the classical formula to construct a cj. there are three potential sources of error {12];

1) bias in & [Z(k,m)] when m is too small for Zi(m)’s to be uncorrelated,

2} nonnormality of Zj(m)’s, and

3) the fact that the sequence z; is not, in practice, covariance stationary.

_ For simple queueing models (e g., M/M/1) Law [11] found that the bias in the estimated variance
of the grand mean was the most serious source of error and that nonnormality was not a problem for
k approximately 20 or more.

In procedure based on the batch means method, the batch size (m) is determined by changing the
number of batches (k) such that Zj(m)’s are approximately uncorrelated. In the procedure that is adopt-
ed here, k = 20 is used. After estimating batch means from the data, if it is found that these batch means
are approximately uncorrelated, the classical formula (5.1) is used to generate c.i.. If not, the confidence
intervals are estimated from :

Zam) = 3% (.m) ey, 1802V & (20, m)] 52)

where M, .02 ) is 2 modification factor as suggested in [27] to compensate for the bias in the variance
of the grand mean and &, @y are the coefficients in a second order autoregressive model, AR(2), (y(t) =
oy y{t-1) + o y(1-2) + &{t)) that is fitted to the data from the simulation.

In order to check whether the resulted batch means are correlated, the lag 1 autocorrelation coeffi-
cient is estimated by the jackknifed estirnator because it will be less biased than the usual estimator

(13].[19].

There are two different approaches for estimating the coefficients of a second order autoregressive
model, AR(2), Maximum Likelihood FunctiotkMethod [5] and Recussive Identification Method [17].
Among them the Recursive Identification Method has been shown to be easier to implement, compara-
tively simple and more accurate than the Maximum Likelihood Function Method. There are several
versions of the Recursive Identification Method; in this paper the recursive least squares (RLS) approach
was used because this is one of the most widely used methods which is also robust and easily imple-
mented [17].

The procedures for estimating a modification factor depends on the nature of the characteristic
equation of the underlying autoregressive process {27}, [15].
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6.

Conclusions

In this paper a heuristic algorithm (SIMICOM) for ontimization of discrete variable stochastic

systems which are modeled through computer simulation has been developed.

The results from the applications showed that the SIMICOM is a very effective tool for optimizing

discrete variable stochastic systems through simulation. For instance, in the robotic manufacturing
system only 0.73% of all the feasible points were evaluated. Furthermore, because of the use of a se-
quential procedure, a considerable amount of computer time was saved by running highly suboptimal

points for shorter periods of time. In some cases in average up to 36,7% of run lengths were saved
[14]. [15]. [16].
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