• 제목/요약/키워드: discrete optimum design

검색결과 150건 처리시간 0.022초

이산시 쌍일차 계통에서 연속적 근사화 방법을 이용한 최적제어기 설계 (Design of an optimal controller for the discrete time bilinear system by using a successive approximation method)

  • 김범수;임묘택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.591-593
    • /
    • 1999
  • The finite time optimum regulation problem of a discrete time bilinear system with a quadratic performance criterion is obtained in terms of a sequence discrete algebraic Lyapunov equations. Our new method is based on the successive approximations. This algorithm saves the computation time to solve the optimal problem, and the design procedure is illustrated for an example.

  • PDF

GA를 이응한 트러스 구조물의 이산최적설계 (Discrete Optimal Design of Truss Structure Using Genetic Algorithm)

  • 황선일;조홍동;이상근;한상훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.301-308
    • /
    • 1999
  • This paper describes the application of genetic algorithm(GA) in the discrete optimal design of truss structures. Stochastic processes generate an intial population of design and then apply principles of natural selection/survival of the fittest to improve the design. GA is applied to minimum weight of truss subject to stress and displacement constraints under multiple loading conditions. First, optimum solutions obtained from GA are compared to verify the reliability of GA with m well-known transmission tower structure which is referred to by other authors. Then, discrete optimal design is performed in satisfying service conditions of truss structure with commercially available fabricated sizes. From the results, it is found that GA search technique is very effective for discrete optimal design of truss structure and has high robustness.

  • PDF

상하부 스툴을 고려한 파형 격벽 최적 설계에 관한 연구 (A Study on Optimum Structural Design of the Corrugated Bulkhead Considering Stools)

  • 신상훈;남성길
    • 대한조선학회논문집
    • /
    • 제40권4호
    • /
    • pp.53-58
    • /
    • 2003
  • Design of the corrugated watertight bulkhead for a bulk carrier is principally determined by the permissible limit of Classification requirements. As the weight of upper and lower stool has considerable portion of the total weight of the transverse bulkhead, optimum design including the stool geometry and size will play an important role on economic shipbuilding. The purpose of this study is focused on the minimization of steel weight using the design variables, which are the shape and the size of the corrugation as well as the upper and lower stools. Discrete variables are used as design variables for the practical design. In this study, the evolution strategies (ES), which can highly improve the possibility of leaching the global minimum point, are selected as an optimization method. Usefulness of this study is verified by comparison with the proven type ship design. As objective function, total weight of the transverse bulkhead including the upper and lower stools is used.

유전알고리즘을 이용한 복합 적층보의 최적설계 (Optimum Design of Composite Laminated Beam Using GA)

  • 구봉근;한상훈;이상근
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.349-358
    • /
    • 1997
  • 본 논문은 복합 적층구조의 최적설계에 있어서 유전알고리즘(GA)의 응용성을 보여준다. 설계점들의 최기집단이 확률론적 과정에 의해 무작위로 생성되고, 설계점들의 개선을 위해 자연선택과 적자생존의 원리가 적용되었다. 유전알고리즘의 범용성 및 신뢰성 검증을 위해 5가지 검증 함수를 고려하였으며, 수치예에서 연속형 및 정수형 그리고 이산형 설계변수를 동시에 갖는 복합 적층 캔틸레버보의 최소 중량 설계가 외부 벌칙함수가 부가된 유전알고리즘에 의해 수행되었다. 설계 문제는 강도, 변위 그리고 고유진동수 제약조건을 포함하면서 다차 비선형성으로 정식화 되었다. 수치예의 결과에 대한 비교분석을 통해 유전알고리즘 탐색 기법이 높은 범용성을 지니면서 양질의 최적해를 매우 효과적으로 찾게됨을 보였다.

  • PDF

A Design Method of Gear Trains Using a Genetic Algorithm

  • Chong, Tae-Hyong;Lee, Joung sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.62-70
    • /
    • 2000
  • The design of gear train is a kind of mixed problems which have to determine various types of design variables; i,e., continuous, discrete, and integer variables. Therefore, the most common practice of optimum design using the derivative of objective function has difficulty in solving those kinds of problems and the optimum solution also depends on initial guess because there are many sophisticated constrains. In this study, the Genetic Algorithm is introduced for the optimum design of gear trains to solve such problems and we propose a genetic algorithm based gear design system. This system is applied for the geometrical volume(size) minimization problem of the two-stage gear train and the simple planetary gear train to show that genetic algorithm is better than the conventional algorithm solving the problems that have continuous, discrete, and integer variables. In this system, each design factor such as strength, durability, interference, contact ratio, etc. is considered on the basis of AGMA standards to satisfy the required design specification and the performance with minimizing the geometrical volume(size) of gear trains

  • PDF

유전자 알고리즘을 이용한 철근콘크리트 보의 단면 최적설계 (Optimum Design of Reinforced Concrete Beam Using Genetic Algorithms)

  • 김봉익;권중현
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.131-135
    • /
    • 2009
  • We present an optimum design method for a rectangular reinforced concrete beam using Genetic Algorithms. The optimum design procedure in this paper employs 2 design cases: i) all of the design variables (b, d, As) of the rectangular reinforced concrete section are used pseudo-continuously, ii) one is pseudo-continuous for the concrete cross section (b, d) and the other is discrete, using an index for the steel area (As). The optimum design in this paper uses Chakrabarty's model. In this paper, the Genetic Algorithms use the method of Elitism and penalty parameters to improve the fitness in the reproduction process, which leads to very practical designs. The optimum design of the steel area in the examples uses ASTM standard reinforcing bars (#3~#11, #14, #18).

프리플렉스교의 전산화 최적설계 (Computer-Aided Optimization of Preflex Bridges)

  • 조효남;이웅세;박정배
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.125-133
    • /
    • 1993
  • Preflex composit girder is intended for a better use on both steel and concrete by introducting prestress into the lower flange concrete with preflection. In Korea, recently preflex bridges are widely used especially for urban construction but the design method depends on the conventional ASD(Allowable Stress Design). This paper suggests an optimization model for the design of preflex composite bridges based on LIFD(Load Resistance Factor Design). The optimization algorithm adopted for the NLP model proposed in the paper is the FTM(Flexible Tolerance Method) which is very efficient for the approximate continuous optimization. For the discrete optimum results, a pesudo discrete optimization is used for the economical round-up to the available dimensions. The economic effectiveness of optimum design based on the LRFD method is investigation by comparing the results with those of the ASD method. Based on applications to the actual design examples, it may be concluded that the optimization model suggested in the paper provides economical but reliable design. And the suggested in the paper provides economical but reliable design. And the computer code for the automatic optimum design of preflex bridges developed in the paper for a CAD system may be successfully used in practice.

  • PDF

Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics

  • Aydogdu, Ibrahim;Carbas, Serdar;Akin, Alper
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.93-112
    • /
    • 2017
  • Metaheuristic algorithms in general make use of uniform random numbers in their search for optimum designs. Levy Flight (LF) is a random walk consisting of a series of consecutive random steps. The use of LF instead of uniform random numbers improves the performance of metaheuristic algorithms. In this study, three discrete optimum design algorithms are developed for steel skeletal structures each of which is based on one of the recent metaheuristic algorithms. These are biogeography-based optimization (BBO), brain storm optimization (BSO), and artificial bee colony optimization (ABC) algorithms. The optimum design problem of steel skeletal structures is formulated considering LRFD-AISC code provisions and W-sections for frames members and pipe sections for truss members are selected from available section lists. The minimum weight of steel structures is taken as the objective function. The number of steel skeletal structures is designed by using the algorithms developed and effect of LF is investigated. It is noticed that use of LF results in up to 14% lighter optimum structures.

뉴랄 네트워크에 의한 선체 중앙단면 최적구조설계 (Optimum Design of Midship Section by Artificial Neural Network)

  • 양영순;문상훈;김신형
    • 대한조선학회논문집
    • /
    • 제33권2호
    • /
    • pp.44-55
    • /
    • 1996
  • 1960년대 중반 전산기를 이용한 선체 구조설계가 최초로 시도된 후 국내에서도 1980년부터 중앙단면 최적설계에 관한 많은 연구가 이루어져 왔다. 선급규정에 의한 선체 중앙단면 최적설계를 할 경우, 야기되는 문제로서는 부재 치수, 부재 개수와 같은 이산변수를 다루어야 하는 어려움이 있어, 이러한 문제를 해결하고자 유전자 알고리즘이나 인공신경망 등의 새로운 최적화 기법의 개발에 관한 연구 등이 진행되고 있다. 이와 같은 관점에서 본 연구에서는 선체 구조설계 문제에 효율적인 최적화 방법을 개발함에 있어, 홉필드 네트워크 모델과 시뮬레이티드 어닐링을 결함하여 Neuro-Optimizer를 개발하고, 이를 토대로 구조공학 문제의 하나인 간단한 트러스 구조물의 최적설계와 선체의 중앙단면 최적설계에 적용하여, 새로운 최적화 기법으로서 가능성이 있음을 확인하였다.

  • PDF

A hybrid simulated annealing and optimality criteria method for optimum design of RC buildings

  • Li, Gang;Lu, Haiyan;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • 제35권1호
    • /
    • pp.19-35
    • /
    • 2010
  • This paper proposes a hybrid heuristic and criteria-based method of optimum design which combines the advantages of both the iterated simulated annealing (SA) algorithm and the rigorously derived optimality criteria (OC) for structural optimum design of reinforced concrete (RC) buildings under multi-load cases based on the current Chinese design codes. The entire optimum design procedure is divided into two parts: strength optimum design and stiffness optimum design. A modified SA with the strategy of adaptive feasible region is proposed to perform the discrete optimization of RC frame structures under the strength constraints. The optimum stiffness design is conducted using OC method with the optimum results of strength optimum design as the lower bounds of member size. The proposed method is integrated into the commercial software packages for building structural design, SATWE, and for finite element analysis, ANSYS, for practical applications. Finally, two practical frame-shear-wall structures (15-story and 30-story) are optimized to illustrate the effectiveness and practicality of the proposed optimum design method.