• 제목/요약/키워드: discontinuous Galerkin method

검색결과 65건 처리시간 0.018초

L2-ERROR ANALYSIS OF FULLY DISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS FOR NONLINEAR SOBOLEV EQUATIONS

  • Ohm, Mi-Ray;Lee, Hyun-Young
    • 대한수학회보
    • /
    • 제48권5호
    • /
    • pp.897-915
    • /
    • 2011
  • In this paper, we develop a symmetric Galerkin method with interior penalty terms to construct fully discrete approximations of the solution for nonlinear Sobolev equations. To analyze the convergence of discontinuous Galerkin approximations, we introduce an appropriate projection and derive the optimal $L^2$ error estimates.

비정렬 격자계에서 고차정확도 불연속 갤러킨 기법을 이용한 블레이드-와류 간섭 현상 모사 (HIGH-ORDER ACCURATE SIMULATIONS OF BLADE-VORTEX INTERACTION USING A DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES)

  • 이희동;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.57-70
    • /
    • 2008
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin finite-element method has been developed for the numerical simulations of blade-vortex interaction phenomena on unstructured meshes. A free vortex in freestream was investigated to assess the vortex-preserving property and the accuracy of the present flow solver. Blade-vortex interaction problems in subsonic and transonic freestreams were simulated by adopting a multi-level solution-adaptive dynamic mesh refinement/coarsening technique. The results were compared with those of other numerical and experimental methods. It was shown that the present discontinuous Galerkin flow solver can preserve the vortex structure for significantly longer vortex convection time and can accurately capture the complex unsteady blade-vortex interaction flows, including generation and propagation of acoustic waves.

  • PDF

비정렬 격자계에서 고차정확도 불연속 갤러킨 기법을 이용한 블레이드-와류 간섭 현상 모사 (HIGH-ORDER ACCURATE SIMULATIONS OF BLADE-VORTEX INTERACTION USING A DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES)

  • 이희동;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.57-70
    • /
    • 2008
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin finite-element method has been developed for the numerical simulations of blade-vortex interaction phenomena on unstructured meshes. A free vortex in freestream was investigated to assess the vortex-preserving property and the accuracy of the present flow solver. Blade-vortex interaction problems in subsonic and transonic freestreams were simulated by adopting a multi-level solution-adaptive dynamic mesh refinement/coarsening technique. The results were compared with those of other numerical and experimental methods. It was shown that the present discontinuous Galerkin flow solver can preserve the vortex structure for significantly longer vortex convection time and can accurately capture the complex unsteady blade-vortex interaction flows, including generation and propagation of acoustic waves.

  • PDF

A DISCONTINUOUS GALERKIN METHOD FOR A MODEL OF POPULATION DYNAMICS

  • Kim, Mi-Young;Yin, Y.X.
    • 대한수학회논문집
    • /
    • 제18권4호
    • /
    • pp.767-779
    • /
    • 2003
  • We consider a model of population dynamics whose mortality function is unbounded. We approximate the solution of the model using a discontinuous Galerkin finite element for the age variable and a backward Euler for the time variable. We present several numerical examples. It is experimentally shown that the scheme converges at the rate of $h^{3/2}$ in the case of piecewise linear polynomial space.

The continuous-discontinuous Galerkin method applied to crack propagation

  • Forti, Tiago L.D.;Forti, Nadia C.S.;Santos, Fabio L.G.;Carnio, Marco A.
    • Computers and Concrete
    • /
    • 제23권4호
    • /
    • pp.235-243
    • /
    • 2019
  • The discontinuous Galerkin method (DGM) has become widely used as it possesses several qualities, such as a natural ability to dealing with discontinuities. DGM has its major success related to fluid mechanics. Its major importance is the ability to deal with discontinuities and still provide high order of approximation. That is an important advantage when simulating cracking propagation. No remeshing is necessary during the propagation, since the crack path follows the interface of elements. However, DGM comes with the drawback of an increased number of degrees of freedom when compared to the classical continuous finite element method. Thus, it seems a natural approach to combine them in the same simulation obtaining the advantages of both methods. This paper proposes the application of the combined continuous-discontinuous Galerkin method (CDGM) to crack propagation. An important engineering problem is the simulation of crack propagation in concrete structures. The problem is characterized by discontinuities that evolve throughout the domain. Crack propagation is simulated using CDGM. Discontinuous elements are placed in regions with discontinuities and continuous elements elsewhere. The cohesive zone model describes the fracture process zone where softening effects are expressed by cohesive zones in the interface of elements. Two numerical examples demonstrate the capacities of CDGM. In the first example, a plain concrete beam is submitted to a three-point bending test. Numerical results are compared to experimental data from the literature. The second example deals with a full-scale ground slab, comparing the CDGM results to numerical and experimental data from the literature.

A STABILITY RESULT FOR THE COMPRESSIBLE STOKES EQUATIONS USING DISCONTINUOUS PRESSURE

  • Kweon, Jae-Ryong
    • 대한수학회지
    • /
    • 제36권1호
    • /
    • pp.159-171
    • /
    • 1999
  • We formulate and study a finite element method for a linearized steady state, compressible, viscous Navier-Stokes equations in 2D, based on the discontinuous Galerkin method. Dislike the standard discontinuous galerkin method, we do not assume that the triangle sides be bounded away from the characteristic direction. the unique stability follows from the inf-sup condition established on the finite dimensional spaces for the (incompressible) Stokes problem. An error analysis having a jump discontinuity for pressure is shown.

  • PDF

A PRIORI ERROR ESTIMATES OF A DISCONTINUOUS GALERKIN METHOD FOR LINEAR SOBOLEV EQUATIONS

  • Ohm, Mi-Ray;Shin, Jun-Yong;Lee, Hyun-Young
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권3호
    • /
    • pp.169-180
    • /
    • 2009
  • A discontinuous Galerkin method with interior penalty terms is presented for linear Sobolev equation. On appropriate finite element spaces, we apply a symmetric interior penalty Galerkin method to formulate semidiscrete approximate solutions. To deal with a damping term $\nabla{\cdot}({\nabla}u_t)$ included in Sobolev equations, which is the distinct character compared to parabolic differential equations, we choose special test functions. A priori error estimate for the semidiscrete time scheme is analyzed and an optimal $L^\infty(L^2)$ error estimation is derived.

  • PDF

NUMERICAL COUPLING OF TWO SCALAR CONSERVATION LAWS BY A RKDG METHOD

  • OKHOVATI, NASRIN;IZADI, MOHAMMAD
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권3호
    • /
    • pp.211-236
    • /
    • 2019
  • This paper is devoted to the study and investigation of the Runge-Kutta discontinuous Galerkin method for a system of differential equations consisting of two hyperbolic conservation laws. The numerical coupling flux which is used at a given interface (x = 0) is the upwind flux. Moreover, in the linear case, we derive optimal convergence rates in the $L_2$-norm, showing an error estimate of order ${\mathcal{O}}(h^{k+1})$ in domains where the exact solution is smooth; here h is the mesh width and k is the degree of the (orthogonal Legendre) polynomial functions spanning the finite element subspace. The underlying temporal discretization scheme in time is the third-order total variation diminishing Runge-Kutta scheme. We justify the advantages of the Runge-Kutta discontinuous Galerkin method in a series of numerical examples.

Time-discontinuous Galerkin quadrature element methods for structural dynamics

  • Minmao, Liao;Yupeng, Wang
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.207-216
    • /
    • 2023
  • Three time-discontinuous Galerkin quadrature element methods (TDGQEMs) are developed for structural dynamic problems. The weak-form time-discontinuous Galerkin (TDG) statements, which are capable of capturing possible displacement and/or velocity discontinuities, are employed to formulate the three types of quadrature elements, i.e., single-field, single-field/least-squares and two-field. Gauss-Lobatto quadrature rule and the differential quadrature analog are used to turn the weak-form TDG statements into a system of algebraic equations. The stability, accuracy and numerical dissipation and dispersion properties of the formulated elements are examined. It is found that all the elements are unconditionally stable, the order of accuracy is equal to two times the element order minus one or two times the element order, and the high-order elements possess desired high numerical dissipation in the high-frequency domain and low numerical dissipation and dispersion in the low-frequency domain. Three fundamental numerical examples are investigated to demonstrate the effectiveness and high accuracy of the elements, as compared with the commonly used time integration schemes.

A NON-OVERLAPPING DOMAIN DECOMPOSITION METHOD FOR A DISCONTINUOUS GALERKIN METHOD: A NUMERICAL STUDY

  • Eun-Hee Park
    • Korean Journal of Mathematics
    • /
    • 제31권4호
    • /
    • pp.419-431
    • /
    • 2023
  • In this paper, we propose an iterative method for a symmetric interior penalty Galerkin method for heterogeneous elliptic problems. The iterative method consists mainly of two parts based on a non-overlapping domain decomposition approach. One is an intermediate preconditioner constructed by understanding the properties of the discontinuous finite element functions and the other is a preconditioning related to the dual-primal finite element tearing and interconnecting (FETI-DP) methodology. Numerical results for the proposed method are presented, which demonstrate the performance of the iterative method in terms of various parameters associated with the elliptic model problem, the finite element discretization, and non-overlapping subdomain decomposition.