• Title/Summary/Keyword: discharge cells

검색결과 391건 처리시간 0.022초

고율 방전용 리튬 전지의 한계 방전 전류 예측을 위한 전기화학 시뮬레이션 (Electrochemical Simulation for Limited-Discharge Current Prediction of Li-ion Secondary Cell Using High-Rate Discharge)

  • 김성종;이영신
    • 대한기계학회논문집A
    • /
    • 제39권8호
    • /
    • pp.807-812
    • /
    • 2015
  • 리튬 전지는 에너지 밀도가 높고, 소형화 및 경량화가 가능한 이차전지로서 저장된 화학 에너지를 전기화학적 반응을 통해 전기 에너지로 변환하는 장치로 노트북, 휴대폰, 파워-툴 및 자동차 등에 널리 사용되고 있는 에너지원이다. 특히, 파워-툴이나 자동차와 같은 응용분야에서는 고율 충방전을 필요로 하는데, 본 논문에서는 리튬 전지의 고율 방전 특성에 대해서 상용 유한요소 해석 프로그램을 이용하여 전기화학 시뮬레이션을 진행하여 실험 결과와 유사한 전기화학 모델을 완성하게 되었다. 또한, 이러한 전기화학적 해석 모델을 이용하여 고율 방전용 리튬 전지의 한계 방전 전류가 63A 정도라는 것을 해석적으로 예측 할 수 있었고, 이를 바탕으로 고율 방전 시 리튬 전지의 거동에 대해서 이해할 수 있게 되었다.

AC PDP의 오방전 원인 분석을 위한 어드fp스 방전 특성에 관한 연구 (Study on the Address Discharge Characteristics for the Analysis of the Unstable Discharge in AC PDP)

  • 김동훈;전원재;이석현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.214-215
    • /
    • 2007
  • Unstable sustain discharges can occur at the bottom cells of the panel at high temperature. To solve this phenomenon, the wall charge variation during an address period was investigated. A test panel of 7.5 inch XGA level was used and one green cell was measured. In order to realize operating condition equal to that of the bottom cells of 50 inch panel, the addressing stress pulses are applied. It seems that the resultant wall charge loss during address period increased with increase of temperature as well as the addressing stress pulse voltage. Therefore it results in unstable discharge during sustain period.

  • PDF

AC-PDP의 방전지연 시간과 오방전 특성의 관계 (The Relationship Between the Lag Time of the Discharge and the Characteristics of Mis-Discharge in an AC-PDP)

  • 신재화;김근수
    • 한국전기전자재료학회논문지
    • /
    • 제28권3호
    • /
    • pp.149-153
    • /
    • 2015
  • As the temperature of the panel increases in AC-PDPs, the minimum driving voltage increases. Also, as the more the number of discharge increases in cells, the probability of the strong dark discharge in the reset period increases. In this study, we investigated the relationship between the lag time of the discharge and the mechanism of mis-discharges which are the black noise and bright noise. We conclude that the variation of time lag characterizes the properties of exo-electron emission from MgO. Thus, we found that the main factor of the mis-discharges is the rate of change of the electron emission ability from the MgO surface.

염류용액 방전의 온도 측정에 관한 연구 (A Study on the Temperature Measurement Using Optical Emission in Saline Solution Discharge with Pin to Plate Electrodes)

  • 김중균
    • 조명전기설비학회논문지
    • /
    • 제30권1호
    • /
    • pp.66-71
    • /
    • 2016
  • In this study, electrical and spectroscopic characteristics were investigated in the pin to plate discharge of 0.9% weight per unit volume saline solution. The positive and positive- and negative-going dc pulse with 5% duty ratio were applied to tungsten pin electrode. The more amount of discharge current flew in negative discharge. The temperature, which is considered as a local value in the vicinity of vapor of discharge, was about 3,000K which is much higher than the value recommended to be controlled. It can be suggested that not only the temperature of liquid but also the local temperature of vapor is monitored to investigate damages on tissue or cells in biological application.

전구체로서 PVDF를 이용한 탄소 도포 실리콘 재료의 개발 및 리튬이차전지 음극 특성 (Development of Silicone coated by Carbon driven PVDF and its anode characteristics for Lithium Battery)

  • 도칠훈;정기영;진봉수;김현수;문성인;윤문수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.350-351
    • /
    • 2005
  • The electrochemical behavior of Si-C material synthesized by heating the mixture of silicon and polyvinylidene fluoride (PVDF). Coin cells of the type 2025 were made using the synthesized material and the electrochemical studies were performed. Si-C/Li cells were made by using the developed Si-C material. Charge/discharge test was performed at 0.1C hour rate. Initial charge and discharge capacities at Si-C material derived from 20 wt.% of PVDF was found to be 1,830 and 526 mAh/g respectively. Initial charge/discharge characteristics of the electrode were analyzed. The level of reversible specific capacity was about 216 mAh/g at Si-C material derived from 20 wt.% of PVDF, IIE, intercalation efficiency at initial charge/discharge, was 68 %. Surface irreversible specific capacity was 31 mAh/g, and average specific resistance was 2.6 ohm*g.

  • PDF

Charge/Discharge Properties of Camon Added $LiFeO_4$

  • Jin, En-Mei;Li, Hu;Jeon, Yeon-Su;Park, Kyung-Hee;Gu, Hal-Bon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.361-362
    • /
    • 2007
  • Phospho-olivine $LiFePO_4$ cathode materials were prepared by hydrothermal reaction. Carbon black was added to enhance the electrical conductivity of $LiFePO_4$. The structural and morphological performance of $LiFePO_4$ and $LiFePO_4$-C powders were characterized by X-ray diffraction (XRD) and FE-SEM. $LiFePO_4/SPE/Li$ and $LiFePO_4$-C/SPE/Li cells were characterized electrochemically by charge/discharge experiments. The results showed that the discharge capacity of $LiFePO_4$-C/SPE/Li cell was 103 mAh/g at the first cycle. The discharge capacity of $LiFePO_4$-C/SPE/Li cell with 5 wt% carbon black was the largest among $LiFePO_4$-C/SPE/Li cells, 126 mAh/g at the first cycle and 123 mAh/g after 30 cycles, respectively. It was demonstrated that cycling performance of $LiFePO_4$-C/SPE/Li cell with 5 wt% carbon black was better than that of $LiFePO_4$/SPE/Li cell.

  • PDF

Long Gap Hump 전극구조를 가진 ac PDP에서의 Xe-Ne 가스의 방전 특성 연구 (A Study of Discharge Characteristics in Xe-Ne Gas Mixture for ac PDP with Long Gap Hump Electrode)

  • 허종철;옥정우;이돈규;이해준;이호준;박정후
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.155-159
    • /
    • 2009
  • To increase the luminance and luminous efficacy in the discharge for alternating current plasma display panel (ac PDP), the increment of Xe contents and long discharge gap are necessary. However, the driving voltage and the cost of driving circuit increases in the high Xe contents and long discharge path condition. In this paper, a long gap ITO hump electrode (LGH) model for discharge cells of ac PDP is evaluated in the various Xe contents($5{\sim}20%$). The discharge voltage of LGH structure is lower about 30V than that of ITa reference structure with same main discharge gap. The LGH structure has lower power consumption and higher luminance than those of reference structure, respectively. Also, the luminous efficacy of LGH structure is higher about 20% than that of ITO reference structure in the 20% Xe contents.

Electrical and Optical Characteristics of Color ac-PDP with a New Cell Structure

  • Lee, Woo-Geun;Ko, Ji-Sung;Lee, Jae-Young;Shin, Jung-Hong;Cho, Jung-Soo;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.189-190
    • /
    • 2000
  • A plasma display panel(PDP) with a new discharge cells are investigated electrically and optically. These cells have the structure of a long discharge path length and a small electrode area. They have shown a higher luminous efficiency and a lower power consumption about $30{\sim}40%$ improvement than the conventional standard ac PDP cells.

  • PDF

Detection of Unbalanced Voltage Cells in Series-connected Lithium-ion Batteries Using Single-frequency Electrochemical Impedance Spectroscopy

  • Togasaki, Norihiro;Yokoshima, Tokihiko;Oguma, Yasumasa;Osaka, Tetsuya
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.415-423
    • /
    • 2021
  • For a battery module where single cells are connected in series, the single cells should each have a similar state of charge (SOC) to prevent them from being exposed to an overcharge or over-discharge during charge-discharge cycling. To detect the existence of unbalanced SOC cells in a battery module, we propose a simple measurement method using a single-frequency response of electrochemical impedance spectroscopy (EIS). For a commercially available graphite/nickel-cobalt-aluminum-oxide lithium-ion cell, the cell impedance increases significantly below SOC20%, while the impedance in the medium SOC region (SOC20%-SOC80%) remains low with only minor changes. This impedance behavior is mostly due to the elementary processes of cathode reactions in the cell. Among the impedance values (Z, Z', Z"), the imaginary component of Z" regarding cathode reactions changes heavily as a function of SOC, in particular, when the EIS measurement is performed around 0.1 Hz. Thanks to the significant difference in the time constant of cathode reactions between ≤SOC10% and ≥SOC20%, a single-frequency EIS measurement enlarges the difference in impedance between balanced and unbalanced cells in the module and facilitates an ~80% improvement in the detection signal compared to results with conventional EIS measurements.