Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00115

Detection of Unbalanced Voltage Cells in Series-connected Lithium-ion Batteries Using Single-frequency Electrochemical Impedance Spectroscopy  

Togasaki, Norihiro (Research Organization for Nano and Life Innovation, Waseda University)
Yokoshima, Tokihiko (Research Organization for Nano and Life Innovation, Waseda University)
Oguma, Yasumasa (Research Organization for Nano and Life Innovation, Waseda University)
Osaka, Tetsuya (Research Organization for Nano and Life Innovation, Waseda University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.4, 2021 , pp. 415-423 More about this Journal
Abstract
For a battery module where single cells are connected in series, the single cells should each have a similar state of charge (SOC) to prevent them from being exposed to an overcharge or over-discharge during charge-discharge cycling. To detect the existence of unbalanced SOC cells in a battery module, we propose a simple measurement method using a single-frequency response of electrochemical impedance spectroscopy (EIS). For a commercially available graphite/nickel-cobalt-aluminum-oxide lithium-ion cell, the cell impedance increases significantly below SOC20%, while the impedance in the medium SOC region (SOC20%-SOC80%) remains low with only minor changes. This impedance behavior is mostly due to the elementary processes of cathode reactions in the cell. Among the impedance values (Z, Z', Z"), the imaginary component of Z" regarding cathode reactions changes heavily as a function of SOC, in particular, when the EIS measurement is performed around 0.1 Hz. Thanks to the significant difference in the time constant of cathode reactions between ≤SOC10% and ≥SOC20%, a single-frequency EIS measurement enlarges the difference in impedance between balanced and unbalanced cells in the module and facilitates an ~80% improvement in the detection signal compared to results with conventional EIS measurements.
Keywords
Lithium-Ion Battery; Battery Module; Cell Balance; Electrochemical Impedance Spectroscopy; Time Constant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. M. Hoque, M. A. Hannan, A. Mohamed and A. Ayob, Renew. sustain. energy rev., 2017, 75, 1363-1385.   DOI
2 T. Osaka, T. Momma, D. Mukoyama, H. Nara, J. Power Sources., 2012, 205, 483-486.   DOI
3 C. T. Love and K. Swider-Lyons, Electrochem Solid State Letters., 2012, 15(4), A53.   DOI
4 H. Nara, D. Mukoyama, T. Yokoshima, T. Momma and T. Osaka, J. Electrochem. Soc., 2015, 163(3), A434.   DOI
5 M. D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach, U. Heider and L. Heider, J. Electrochem. Soc., 1999, 146(4), 1279.   DOI
6 M. E. Orazem and B. Tribollet, ChemTexts, 2020, 6(2), 1-9.   DOI
7 T. P. Heins, N. Harms, L. S. Schramm and U. Schroder, Energy Technol., 2016, 4(12), 1509-1513.   DOI
8 T. Momma, M. Matsunaga, D. Mukoyama and T. Osaka, J. Power Sources., 2012, 216, 304-307.   DOI
9 M. Shibuya, T. Nishina, T. Matsue and I. Uchida, J. Electrochem. Soc., 1996, 143(10), 3157-3160.   DOI
10 F. Nobili, F. Croce, B. Scrosati and R. Marassi, Chem. Mater., 2001, 13(5), 1642-1646.   DOI
11 C. T. Love, M. B. V. Virji, R. E. Rocheleau and K. E. Swider-Lyons, J. Power Sources., 2014, 266, 512-519.   DOI
12 V. J. Ovejas and A. Cuadras, Batteries, 2018, 4(3), 43.   DOI
13 I. A. J. Gordon, S. Grugeon, H. Takenouti, B. Tribollet, M. Armand, C. Davoisne, A. Debart and S. Laruelle, Electrochimica Acta, 2017, 223, 63-73.   DOI
14 T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell and S. Sugihara, Ionics., 2000, 6(1), 92-106.   DOI
15 N. Togasaki, T. Yokoshima, Y. Oguma and T. Osaka, J. Power Sources, 2020, 461, 228168.   DOI
16 M. S. Wu, C. Y. Lin, Y. Y. Wang, C. C. Wan and C. R. Yang, Electrochimica Acta., 2006, 52(3), 1349-1357.   DOI
17 Y. Kato, K. Kawamoto, R. Kanno and M. Hirayama, Electrochemistry, 2012, 80(10), 749-751.   DOI
18 D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R. Oesten and M. Schmidt, J. Electrochem. Soc., 2000, 147(4), 1322.   DOI