Browse > Article
http://dx.doi.org/10.3795/KSME-A.2015.39.8.807

Electrochemical Simulation for Limited-Discharge Current Prediction of Li-ion Secondary Cell Using High-Rate Discharge  

Kim, Simon (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.)
Lee, Young Shin (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.39, no.8, 2015 , pp. 807-812 More about this Journal
Abstract
Li-ion batteries are energy sources that are widely used in applications such as notebooks, cellular phones, power tools, and vehicles. They are devices in which stored chemical energy is changed to electrical energy by electrochemical reactions. They have a high energy density, small size, and are lightweight. In particular, power tools and vehicles require high charge/discharge rates. Therefore, in this paper, we perform electrochemical simulations using a commercial finite-element analysis program to determine the high discharge-rate characteristics of Li-ion cells. In addition, by performing high discharge-rate simulations, we found that the limited discharge current was 63 A. Based on the results obtained, we investigate the behavior of Li-ion cells with a high rate of discharge.
Keywords
Li-ion Secondary Cell; Electrochemical Simulation; Limit Discharge Current;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Linder, D. and Reddy, T.B., 2002, "Handbook of Batteries I," McGraw-Hill companies Inc.
2 Linder, D. and Reddy, T.B., 2002, "Handbook of Batteries II," McGraw-Hill companies Inc.
3 Kim, S. and Kim, D., 2013, "Study of Li-ion Diffusion and Phase Transition in Cathode of Li-ion Battery," Trans. Korean Soc. Mech. Eng. B, Vol.37, No.7, pp.665-667.   DOI
4 You, S., Jung, J., Cheong, K.B. and Go, J., 2011, "Numerical Simulation of Lithium-ion Batteries for Electric Vehicles," Trans. Korean Soc. Mech. Eng. B, Vol.35, No.6, pp. 649-656.   DOI   ScienceOn
5 Sim, S.H., Gang, J.H., An, D., Kim, S.I., Kim, J.Y., and Choi, J.H., 2013, "Remaining Useful Life Prediction of Li-ion Battery Based on Charge Voltage Characteristics," Trans. Korean Soc. Mech. Eng. B, Vol.37, No.4, pp.313-322.   DOI
6 Han, J., Park, J., Yu, S. and Kim, S., 2014, "One- Dimension Thermal Modeling of NiMH Battery for Thermal Management of Electric Vehicles," Trans. Korean Soc. Mech. Eng. B, Vol.38, No.3, pp.227-234.   DOI
7 Newman, J., 1991, "Electrochemical Systems," 2nd ed., Prentice hall, New Jersey.
8 COMSOL Multiphysics, 2008, "Rechargeable Lithium-ion Battery," Solved with COMSOL multiphysics 3.5a.
9 Ang, W.F., Kwon, O.J. and Wang, C.Y., 2010, "Electro Chemical-thermal Modeling of Automotive Li-ion Batteries and Experimental Validation Using a Three-electrode Cell," International Journal of Energy Research, Vol.34, pp.107-115.   DOI   ScienceOn
10 Ole Valoen, L. and Reimers, J., 2005, "Transport Properties of LiPF6 Based Li-ion Battery Electrolytes," Journal of the Electrochemical Society, Vol.152, p.A882.   DOI   ScienceOn
11 Wang, Y., Li, H., He, P., Hosono, E. and Zhou, H., 2010, "Nano Active Materials for Lithium-ion Batteries," The Royal Society of Chemistry 2010 Nanoscale, 2010, Vol.2, pp.1294-1305.