• Title/Summary/Keyword: disaster-prevention

Search Result 3,384, Processing Time 0.034 seconds

Assessment of Damage for the Three­Storied Stone Pagoda of Bulguksa Temple in Gyeongju (경주 불국사 삼층석탑(석가탑)의 손상도 평가)

  • Lee, Gemma
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.299-305
    • /
    • 2019
  • As the damage factors of the three­storey stone pagoda of the Bulguksa Temple in Gyeongju could cause a reduction in the historical and artistic value and accelerate the deterioration of the stone, an appropriate solution is needed. The aim of stone conservation is to conserve the original shape and convey originality from the ancestors to their descendants. This procedure includes a record of the condition, being available in the future. In particular, the damage assessment could be used in conservational research, educational data, conservational treatment, and preventive data. As a result of quantitative damage assessment, biological damage indicated 159 %, chemical damage 114 %, and physical damage 16 %. The west direction revealed 95 % because of the amount of sunshine, moisture, and expansion of rock. Complex factors and high range damage were observed on the foundation and body of the pagoda. Since the top of pagoda was restored in the 1970s, the state presented a good condition. By doing this, the number of organisms could be reduced by cleaning and the physical damage could be minimized by bonding. On the other hand, continuous monitoring will be needed because there is a possibility of reforming the damage in the future.

Characteristics of Sea Surface Temperature Variation during the High Impact Weather over the Korean Peninsula (한반도에서 위험기상 발생 시 나타나는 해수면온도 변동의 특성)

  • Jung, Eunsil
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.240-258
    • /
    • 2019
  • Typhoons, torrential rainfall, and heavy snowfall cause catastrophic losses each year in the Republic of Korea. Therefore, if we can know the possibility of this phenomenon in advance through regular observations, it will be greatly beneficial to Korean society. Korea is surrounded by sea on its three sides, and the sea surface temperature (SST) directly or indirectly affects the development of typhoons, heavy rainfall, and heavy snowfall. Therefore, the characteristics of SST variability related to the high impact weather are investigated in this paper. The heavy rainfall in Korea was distributed around Seoul, Gyeonggi, and west and southern coast. The heavy snowfall occurred mainly in the eastern coastal (hereafter Youngdong Heavy Snow) and the southwestern region (hereafter Honam-type heavy snow). The SST variability was slightly different depending on the type and major occurrence regions of the high impact weather. When the torrential rain occurred, the SST variability was significantly increased in the regions extending to Jindo-Jeju island-Ieodo-Shanghai in China. When the heavy snow occurred, the SST variability has reduced in the southern sea of Jeju island, regardless of the type of heavy snowfall, whereas the SST variability has increased in the East Sea near $130^{\circ}E$ and $39^{\circ}N$. Areas with high SST variability are anticipated to be used as a basis for studying the atmospheric-oceanic interaction mechanism as well as for determining the background atmospheric aerosol observation area.

Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel (개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구)

  • Kim, Hak Joon;Lee, Gyu-Phil;Lim, Chul Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2019
  • The behavior of the 3 hinged precast arch structure was investigated by comparing field measurements with numerical analyses performed for precast lining arch structures, which are widely used for the open-cut tunnel. According to the field measurements, the maximum vertical displacement occurred at the crown with upward displacements during the backfilling up to the crown of the arch and downward displacements at the backfill height above the crown. The final crown displacement was 19 mm upward from the original position. The horizontal displacement at the sidewall, which had a maximum horizontal displacement, occurred inward of the arch when compacting the backfill up to the crown and returned to the original position after completing the backfill construction. According to the analysis of displacement measurements, economical design is expected to be possible for precast arch structures compared to rigid concrete structures due to ground-structure interactions. Duncan model gave good results for the estimation of displacements and deformed shape of the tunnel according to the numerical analyses comparing with field measurements. The earth pressure coefficients calculated from the numerical analyses were 0.4 and 0.7 for the left and the right side of the tunnel respectively, which are agreed well with the eccentric load acting on the tunnel due to topographical condition and actual field measurements.

Study on the Retrieval of Vertical Air Motion from the Surface-Based and Airborne Cloud Radar (구름레이더를 이용한 대기 공기의 연직속도 추정연구)

  • Jung, Eunsil
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.105-112
    • /
    • 2019
  • Measurements of vertical air motion and microphysics are essential for improving our understanding of convective clouds. In this paper, the author reviews the current research on the retrieval of vertical air motions using the cloud radar. At radar wavelengths of 3 mm (W-band radar; 94-GHz radar; cloud radar), the raindrop backscattering cross-section (${\sigma}b$) varies between successive maxima and minima as a function of the raindrop diameter (D) that are well described by Mie theory. The first Mie minimum in the backscattering cross-section occurs at D~1.68 mm, which translates to a raindrop terminal fall velocity of ${\sim}5.85m\;s^{-1}$ based on the Gunn and Kinzer relationship. Since raindrop diameters often exceed this size, the signal is captured in the radar Doppler spectrum, and thus, the location of the first Mie minimum can be used as a reference for retrieving the vertical air motion. The Mie technique is applied to radar Doppler spectra from the surface-based and airborne, upward pointing W-band radars. The contributions of aircraft motion to the vertical air motion are also described and further the first-order aircraft motion corrected equation is presented. The review also shows that the separate spectral peaks due to the cloud droplets can provide independent validation of the Mie technique retrieved vertical air motion using the cloud droplets as a tracer of vertical air motion.

Risk of Smoke Occurring in the Combustion of Plastics (플라스틱의 연소 시 발생하는 연기 위험성에 관한 연구)

  • You, Jisun;Chung, Yeong-jin
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • In this study, the combustibility of five types of plastic plates, fiber reinforced plastic (FRP), polystyrene (PS), polycarbonate (PC), polypropylene (PP), and polyvinyl chloride (PVC), were tested using a cone calorimeter (ISO 5660). The PVC plate showed a $44.65kW/m^2$ lower peak heat release rate (HRR) and a $30.97kW/m^2$ lower maximum average rate of heat emission than the other four types of plastics, whereas the PS plate showed a $773.44kW/m^2$ higher peak HRR and $399.14kW/m^2$ higher maximum average rate of heat emission. The PC plate and PS plate showed the highest HRR by a maximum of 3.88 times in $CO_{mean}$ yields, while the PS pate and PP plate showed the highest HRR by a maximum 4.88 times in $CO_{2mean}$ yields. In addition, the smoke performance index (SPI) of the PS plate decreased by 74.81%~95.99%; the smoke growth index (SGI) increased to 76%~300%; the smoke intensity (SI) also increased to 917.73% ~ 9607.57%, and the danger of smoke increased. The PS plate was found to have the highest risk of life damage due to smoke on the thermal and smoke sides.

A Study on Methods for the Domestic Diffusion of Intelligent Security Project : With a Focus on the Case of Smart City Integrated Platform (지능형 방범 사업의 국내 확산 방안 연구 : 스마트시티 통합플랫폼을 대상으로)

  • Shin, Young-Seob;Han, Sun-Hee;Lee, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.474-484
    • /
    • 2019
  • In this age, where the social environment is changing rapidly and unpredictably, interest in safety from crime is increasing in Korean society. As the desire to live a life free from the fear of crime increases, interest in the construction of safe cities is also rising nationwide. To meet the national demand, the Korean government is promoting a project to link public disaster safety systems by involving municipalities, 112, 119, and other emergency services and institutions through the Smart City Integrated Platform in order to construct a smart safety net. This study investigates the linking of theSmart City Integrated Platform and theIntelligent Security Project. The results are as follows. 1. The linkage's objective is clear. 2. The system sector can provide information to accident-related organizations. 3. The scenario area can be expanded to a crime-prevention sector, and a long-term urban information integration infrastructure can be created. 4. Product testing is enabled by a smart city road map and through continuous consultation with relevant organizations. 5. Project diffusion to other local governments can be promoted with the continued addition of commercial products.

Micrometeorology Analysis of Pear Orchard with Anti-insect Nets for Non-bagged Cultivation (망 시설 유무에 따른 배 과원의 미기상 분석)

  • Yu, Seok-cheol;Choi, Jin-ho;Lee, Han-chan;Lee, Ug-young
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2019
  • This study was carried out to investigate at the micrometeorology change of the orchard according to the net installation. Two weather stations were installed at the inside of the anti-insect nets(2 mm, 4 mm), one was installed at the outside(control). They were observed the temperature, humidity, wind speed and solar radiation from April to September 2018. Daily mean temperature at the experimental group was higher than control group by $0.2^{\circ}C$. Daily mean humidity at the experimental group was higher than control group by 3.5 to 4.7%. Daily mean the solar radiation at the experimental group(2 mm) was lower than control group by 50%. The wind speed was decreased from 12% to 50% of the external wind speed at 4 mm, and from 25% to 59% at 2 mm.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

Structural Analysis of Multi-Functional Fishway in Seomoon Weir (서문보의 다기능 어도의 구조해석)

  • Lee, Young Jae;Lee, Jung Shin;Jang, Hyung Kyu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.308-319
    • /
    • 2020
  • In this study, the field applicability of the recently constructed multifunctional fishway in Seomunbo, Yeongcheon-si, and Gyeongsangbuk-do were examined. The analysis variables were R/C slab (S1) and R/C+S/C slab (S2), the underground passage standard areas (width × length) were 1.4 m × 0.2 m, 1.4 m × 0.3 m, and 1.4 m × 0.6 m, and the flow velocities were 0.8, 1.2, and 1.6 m/s. As a result of the analysis, the safety of the design of Seomunbo was evaluated. The analysis showed compared to the Seomoon Weir fishway, the maximum stress of S2 decreased by 24 - 32%, the bending moment of the underground passage decreased by 16 - 33%, the maximum stress of the sidewall decreased by 20 - 36%. In addition, the bending moment of the upper slab decreased by 17 - 33%, the maximum stress of the upper slab decreased by 9 - 28%, and the bending moment decreased by 19 - 33%. Complementation was required in the following percentages: 18% and 14% for the maximum stress and bending moment of the underground passage, respectively, 15% and 17% for the maximum sidewall stress and bending moment, respectively, and 11% and 16% for the upper slab maximum stress and bending moment, respectively. The results showed that S2 was superior to that of the Seomoon Weir fishway, and the underground passage size of 1.4 m × 0.3 m was superior to those of 1.4 m × 0.2 m and 1.4 m × 0.6 m, and R/C+S/C slab was superior to that of R/C slab. The findings are expected to be useful for constructing and designing the multifunctional fishway.

Fire Risk Rating Evaluation of Organic Insulation Materials (유기 단열재의 화재위험성 등급 평가)

  • You, Ji Sun;Jeon, Nam;Chung, Yeong-jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.417-422
    • /
    • 2021
  • In this study, poly isocyanurate foam (PIR), poly urethane foam (PUR), and phenol foam (PF) of organic insulation materials were selected, and investigated using a cone calorimeter, as per ISO 5660-1. Standard materials (PMMA) were used to standardize the fire hazard assessment, and the fire risk was classified and evaluated by Chung's equations-III and IV. The fire performance index-II value of Chung's equations-II was the highest value with PF of 14.77 s2/kW. And the PUR was 0.08 s2/kW, the lowest value of fire performance index-II value. The fire growth index-II value was the lowest value with PF of 0.01 kW/s2. And the PUR was 1.14 kW/s2, the highest value of fire growth index-II value. The fire performance index-III (FPI-III) of Chung's equations-III had the lowest value for PUR (0.11) and the highest for PF (20.23). The PUR showed the highest value of the fire growth index-III (FGI-III) as 14.25, while the PF exhibited 0.13 regarded as the safest materials. The fire risk index-IV (FRI-IV) value of Chung's equation-IV was in the following order: PUR (130.03) >> PIR (19.13) > PMMA (1.00) > PF (0.01). Therefore, it was concluded that the fire risk associated with PF is the lowest, whereas that associated with PUR is the highest.