DOI QR코드

DOI QR Code

Characteristics of Sea Surface Temperature Variation during the High Impact Weather over the Korean Peninsula

한반도에서 위험기상 발생 시 나타나는 해수면온도 변동의 특성

  • Jung, Eunsil (School of Disaster Prevention and Environmental Engineering, Kyungpook National University)
  • 정은실 (경북대학교 건설방재공학부)
  • Received : 2019.02.12
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

Typhoons, torrential rainfall, and heavy snowfall cause catastrophic losses each year in the Republic of Korea. Therefore, if we can know the possibility of this phenomenon in advance through regular observations, it will be greatly beneficial to Korean society. Korea is surrounded by sea on its three sides, and the sea surface temperature (SST) directly or indirectly affects the development of typhoons, heavy rainfall, and heavy snowfall. Therefore, the characteristics of SST variability related to the high impact weather are investigated in this paper. The heavy rainfall in Korea was distributed around Seoul, Gyeonggi, and west and southern coast. The heavy snowfall occurred mainly in the eastern coastal (hereafter Youngdong Heavy Snow) and the southwestern region (hereafter Honam-type heavy snow). The SST variability was slightly different depending on the type and major occurrence regions of the high impact weather. When the torrential rain occurred, the SST variability was significantly increased in the regions extending to Jindo-Jeju island-Ieodo-Shanghai in China. When the heavy snow occurred, the SST variability has reduced in the southern sea of Jeju island, regardless of the type of heavy snowfall, whereas the SST variability has increased in the East Sea near $130^{\circ}E$ and $39^{\circ}N$. Areas with high SST variability are anticipated to be used as a basis for studying the atmospheric-oceanic interaction mechanism as well as for determining the background atmospheric aerosol observation area.

태풍, 집중호우, 대설은 매년 우리나라에서 치명적인 손실을 초래한다. 따라서 정기적인 관측을 통하여 이러한 현상의 발생 가능성을 미리 알 수 있다면, 사회적으로 큰 유익을 제공할 수 있을 것이다. 우리나라는 삼면이 바다로 둘러싸여 있고, 해수면온도가 태풍, 집중호우, 대설 발달에 직 간접적으로 영향을 미치므로, 이 논문에서는 위험기상과 관련하여 나타나는 해수면온도 변동성의 특성을 조사하였다. 우리나라에서 발생하는 집중호우는 서울경기 부근 및 서해안을 중심으로, 그리고 남해안을 중심으로 분포하였다. 대설은 주로 동해안지역(이하 영동 대설)과 남서부 지역(호남형 대설)에서 발생하였다. 위험기상 종류 및 주요 발생지역에 따라 해수면온도 변동성이 조금씩 다르게 나타났으며, 집중호우 발생 시에 진도-제주도-이어도-중국 상하이 방향으로 이어지는 해역에서 해수면온도 변동성이 크게 나타났다. 대설 발생 시, 대설형태와 상관없이, 제주도 남쪽 해상에서 해수면온도 변동성이 작은 영역이 관측되었으며, $130^{\circ}E$, $39^{\circ}N$ 부근 동해상에서 강한 해수면온도 변동성이 나타났다. 해수면온도 변동성이 큰 지역은, 대기-해양 상호작용 메커니즘을 연구하는 기초자료로 사용될 수 있을 뿐만 아니라, 배경대기 에어로졸 관측영역 결정에도 활용될 것이다.

Keywords

References

  1. Allen, J.T., Tippett, M.K., and Sobel A.H., 2015, Inuence of the El Nino/ Southern Oscillation on tornado and hail frequency in the United States. Nature Geoscience, 8, 278-283. https://doi.org/10.1038/ngeo2385
  2. Baek, S.-K., Cho, C.-H., Kim, J.-H., and Song, H.-Y., 2005, Analyses of precipitation cases using wind profiler. Asia-Pacific Journal of Atmospheric Sciences, 41(1), 1-16. (in Korean)
  3. Brooks, H.E., Doswell III, C.A., and Cooper J., 1994, On the environments of tornadic and nontornadic mesocyclones. Weather Forecasting, 9, 606-618. https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2
  4. Chen, Y.-L. and Li, J., 1995, Large-scale conditions favorable for the development of heavy rainfall during TAMEX IOP3. Monthly Weather Review, 123,2978-3002. https://doi.org/10.1175/1520-0493(1995)123<2978:LSCFFT>2.0.CO;2
  5. Chi, N.-H., Lien, R.-C., D'Asaro, E.A., and Ma, B.B., 2014, The surface mixed layer heat budget from mooring observations in the central Indian Ocean during Madden-Julian Oscillation events. Journal of Geophysical Research Oceans, 119, 4638-4652, doi:10.1002/2014JC010192.
  6. DeMott, C.A., Klingaman, N.P., and Woolnough, S.J., 2015, Atmosphere-ocean coupled processes in the Madden-Julian Oscillation. Review of Geophysics, 53, 1099-1154, doi:10.1002/2014RG000478.
  7. Drushka, K., Sprintall, J., Gille, S.T., and Wijffels, S., 2012, In situ observations of Madden-Julian Oscillation mixed layer dynamics in the Indian and western Pacific Oceans. Journal of Climate, 25, 2306-2328. https://doi.org/10.1175/JCLI-D-11-00203.1
  8. Duvel, J.P., Roca, R., and Vialard, J., 2004, Ocean mixed layer temperature variations induced by intraseasonal convective perturbations over the Indian Ocean. Journal of the Atmospheric Sciences, 61, 1004-1023. https://doi.org/10.1175/1520-0469(2004)061<1004:OMLTVI>2.0.CO;2
  9. Gensini, V.A. and Ashley, W.S., 2011, Climatology of potentially severe convective environments from the North American Regional Reanalysis. E-Journal of Severe Storms Meteorology, 6(8), 1-40.
  10. Hwang, S.-O. and Lee, D.-K., 1993, A study on the relationship between heavy rainfalls and associated low-level jets in the Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 29(2), 133-146. (in Korean)
  11. IPCC, 2013, Climate Change 2013: The physical science basis. In Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds.), Contribution of working group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 p.
  12. Jang, M., Jee, J.-B., Min, J.-S., Lee, Y.-H., Chung, J.-S., and You, C.-H., 2016, Studies on the Predictability of Heavy Rainfall Using Prognostic Variables in Numerical Model. Atmosphere, 26(4), 495-508. (in Korean) https://doi.org/10.14191/Atmos.2016.26.4.495
  13. Jeong, Y.K., 1999, Synoptic Environment Associated with the Heavy Snowfall in the Southwestern Region of Korean peninsula. Journal of the Korean Earth Science Society, 20(4), 398-410. (in Korean)
  14. Jhun, J.-G., Lee, D.-K., and Lee, H.-A., 1994, A study on the heavy snowfalls occurred in South Korea. Asia-Pacific Journal of Atmospheric Sciences, 30(1), 97-117. (in Korean)
  15. Jung, E. and Kirtman, B., 2016a, ENSO modulation of tropical Indian Ocean sub-seasonal variability. Geophysical Research Letter, 43, 12,634-12,642, doi:10.1002/2016GL071899.
  16. Jung, E. and Kirtman, B., 2016b, Can we predict seasonal changes in high impact weather in the United States? Environmental Research Letters, 11, 074018, doi:10.1088/1748-9326/11/7/074018.
  17. Jung, S.-P., Kwon, T.-Y., and Han, S.-O., 2014, Thermodynamic characteristics associated with localized torrential rainfall events in the middle west region of Korean Peninsula. Atmosphere, 24(4), 457-470. (in Korean) https://doi.org/10.14191/Atmos.2014.24.4.457
  18. Jung, S.-P., In, S.-R., Kim, H.-W., Sim, J., Han, S.-O., and Choi, B.-C., 2015, Classification of atmospheric vertical environment associated with heavy rainfall using long-term radiosonde observational data, 1997-2013. Atmosphere, 25(4), 611-622. (in Korean) https://doi.org/10.14191/Atmos.2015.25.4.611
  19. Konrad, C.E., 1997, Synoptic-scale features associated with warm season heavy rainfall over the interior southeastern United States. Weather Forecasting, 12, 557-571. https://doi.org/10.1175/1520-0434(1997)012<0557:SSFAWW>2.0.CO;2
  20. Kwak, B.-C. and Yoon, I.-H., 2000, Synoptic analysis on snowstorm occurred along the east coast of the Korean Peninsula during 5-7 January, 1997. Journal of the Korean Earth Science Society, 21(3), 258-275. (in Korean)
  21. Kwon, T.-Y., Kim, J.-S., and Kim, B.-G., 2013, Comparison of the properties of Yeongdong and Yeongseo heavy rain. Atmosphere, 23(3), 245-264. (in Korean) https://doi.org/10.14191/Atmos.2013.23.3.245
  22. Lee, H. and Lee, T.-Y., 1994, The governing factors for heavy snowfalls in Youngdong area. Asia-Pacific Journal of Atmospheric Sciences, 30(2), 197-218. (in Korean)
  23. Lee, H. R., Kim, K.-E., Yoo, J.-M., and Min, K.-D., 2001, A Study on a severe winter weather occurred in the Korean Peninsula by tropopause undulation. Asia-Pacific Journal of Atmospheric Sciences, 37(2), 195-224. (in Korean)
  24. Lee, H.-Y., Kim, J., Park, I.-G., Kang, H., and Ryu, H., 2018, Local enhancement mechanism of cold surges over the Korean Peninsula. Atmosphere, 28(4), 383-392. (in Korean) https://doi.org/10.14191/ATMOS.2018.28.4.383
  25. Lee, H.Y., Ko, H.Y., Kim, K.E., and Yoon, I.H., 2010, An analysis of characteristics of heavy rainfall events over Yeongdong Region associated with tropopause folding. Journal of the Korean Earth Science Society, 31(4), 354-369. (in Korean) https://doi.org/10.5467/JKESS.2010.31.4.354
  26. Lee, J.-H, Eun, S.-H., Kim, B.-G., and Han, S.-O., 2012, An analysis of low-level stability in the heavy snowfall event observed in the Yeongdong region. Atmosphere, 22, 209-219. (in Korean) https://doi.org/10.14191/Atmos.2012.22.2.209
  27. Lee, J.-G. and Min, K.-H., 2018, Analysis of the west coast heavy snowfall development mechanism from 23 to 25 January 2016. Atmosphere, 28(1), 53-67. (in Korean) https://doi.org/10.14191/Atmos.2018.28.1.053
  28. Lee, T.-Y. and Kim, Y.-H., 2007, Heavy precipitation systems over the Korean peninsula and their classification. Asia-Pacific Journal of Atmospheric Sciences, 43(4), 367-396.
  29. Maloney, E. and Sobel, A., 2004, Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. Journal of Climate, 17, 4368-4386. https://doi.org/10.1175/JCLI-3212.1
  30. Matthews, A.J., Baranowski, D.B., Keywood, K.J., Flatau, P.J., and Schimdtko, S., 2014, The surface diurnal warm layer in the Indian Ocean during CINDY/DYNAMO. Journal of Climate, 27, 9101-9122. https://doi.org/10.1175/JCLI-D-14-00222.1
  31. Moum, J.N., de Szoeke, S.P., Smyth, W.D., Edson, J.B., DeWitt, H.L., Moulin, A.J., Thompson, E.J., Zappa, C.J., Rutledge, S.A., Johnson, R.H., and Fairall, C.W., 2014, Air-Sea interactions from westerly wind bursts during the november 2011 MJO in the Indian Ocean. Bulletin of the American Meteorological Society, 95(8), 1185-1199, doi:10.1175/BAMS-D-12-00225.1.
  32. Park, J.-H., Kim, K.-E., and Heo, B.-H., 2009, Comparison of development mechanisms of two heavy snowfall events occurred in Yeongnam and Yeongdong regions of the Korean Peninsula. Atmosphere,19(1), 9-36. (in Korean)
  33. Park, C.-G. and Lee, T.-Y., 2008, Structure of mesoscale heavy precipitation systems originated from the Changma Front. Atmosphere, 18, 317-338. (in Korean)
  34. Pegion, K. and Kirtman, B., 2008, The impact of air-sea interactions on the simulation of tropical intraseasonal variability. Journal of Climate, 21(24), 6616-6635. https://doi.org/10.1175/2008JCLI2180.1
  35. Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., and Schlax, M.G., 2007, Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20 5473-5496. https://doi.org/10.1175/2007JCLI1824.1
  36. Seo, E.-K. and Jhun, J.-G., 1991, A case study of the heavy snowfalls occurred in the Korean Peninsula from 29 January to 1 February 1990. Asia-Pacific Journal of Atmospheric Sciences, 27(2), 165-179. (in Korean)
  37. Tippett, M.K., Sobel, A.H., and Camargo, S.J., 2012, Association of US tornado occurrence with monthly environmental parameters. Geophysical Research Letter, 39, L050368.
  38. Tippett, M.K., Sobel, A.H., Camargo, S.J., and Allen, J.T., 2014, An empirical relation between US Tornado activity and monthly environmental parameters. Journal of Climate, 27, 2983-2999, doi:10.1175/JCLI-D-13-00345.1.
  39. You, C.-H., Lee, D.-I., and Lee, B.-G., 2000, Kinematic characteristics of snow clouds in winter monsoon by radar echo types classification. Asia-Pacific Journal of Atmospheric Sciences, 36(6), 655-666. (in Korean)
  40. Vialard. J., Duvel, J.P., McPhaden, M.J., Bouruet-Aubertot, P., Ward, B., Key, E., Bourras, D., Weller, R., Minnett, P., Weill, A., Cassou, C., Eymard, L., Fristedt, T., Basdevant, C., Dandoneau, Y., Duteil, O., Izumo, T., de Boyer Montegut, C., Masson, S., Marsac., F., Menkes, C., and Kennan, S., 2009, Cirene: Air-sea interactions in the Seychelles-Chagos Thermocline Ridge region. Bulletin of the American Meteorological Society, 90, 45-61, doi:10.1175/2008BAMS2499.2.
  41. Vincent, E.M., Emanuel, K.A., Matthieu, L., Vialard, J., and Madec, G., 2014, Influence of upper ocean stratification interannual variability on tropical cyclones. Journal of Advances in Modeling Earth Systems, 6(3), 680-699, doi: 10.1002/2014MS000327.
  42. Waliser, D.E., Lau, K.M., and Kim, J.-H., 1999, The influence of coupled sea surface temperatures on the Madden-Julian Oscillation: A model perturbation experiment. Journal of the Atmospheric Sciences, 56, 333-358. https://doi.org/10.1175/1520-0469(1999)056<0333:TIOCSS>2.0.CO;2
  43. Webster, P.J., Moore, A.M., Loschnigg, J.P., and Leben, R.R., 1999, The great Indian Ocean warming of 1997-98: Evidence of coupled oceanic-atmospheric instabilities. Nature, 401, 356-360. https://doi.org/10.1038/43848
  44. Woolnough, S., Slingo, J., and Hoskins, B., 2000, The relationship between convection and sea surface temperature on intraseasonal timescales. Journal of Climate, 13, 2086-2104. https://doi.org/10.1175/1520-0442(2000)013<2086:TRBCAS>2.0.CO;2
  45. Wu, L., Wang, B., and Braun, S.A., 2005, Impacts of air-sea interaction on tropical cyclone track and intensity. Monthly Weather Review, 133, 3299-3314. https://doi.org/10.1175/MWR3030.1
  46. Xie, S.-P., Annamalai, H., Schott, F.A., and McCreary Jr., J.P., 2002, Structure and mechanisms of south Indian Ocean climate variability. Journal of Climate, 15, 864-878. https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2
  47. Yun, K.-S., Chan, J.C.L., and Ha, K.-J., 2012, Effects of SST magnitude and gradient on typhoon tracks around East Asia: A case study for Typhoon Maemi (2003). Atmospheric Research, 109, 36-51. https://doi.org/10.1016/j.atmosres.2012.02.012