Browse > Article
http://dx.doi.org/10.14191/Atmos.2019.29.1.105

Study on the Retrieval of Vertical Air Motion from the Surface-Based and Airborne Cloud Radar  

Jung, Eunsil (School of Disaster Prevention and Environmental Engineering, Kyungpook National University)
Publication Information
Atmosphere / v.29, no.1, 2019 , pp. 105-112 More about this Journal
Abstract
Measurements of vertical air motion and microphysics are essential for improving our understanding of convective clouds. In this paper, the author reviews the current research on the retrieval of vertical air motions using the cloud radar. At radar wavelengths of 3 mm (W-band radar; 94-GHz radar; cloud radar), the raindrop backscattering cross-section (${\sigma}b$) varies between successive maxima and minima as a function of the raindrop diameter (D) that are well described by Mie theory. The first Mie minimum in the backscattering cross-section occurs at D~1.68 mm, which translates to a raindrop terminal fall velocity of ${\sim}5.85m\;s^{-1}$ based on the Gunn and Kinzer relationship. Since raindrop diameters often exceed this size, the signal is captured in the radar Doppler spectrum, and thus, the location of the first Mie minimum can be used as a reference for retrieving the vertical air motion. The Mie technique is applied to radar Doppler spectra from the surface-based and airborne, upward pointing W-band radars. The contributions of aircraft motion to the vertical air motion are also described and further the first-order aircraft motion corrected equation is presented. The review also shows that the separate spectral peaks due to the cloud droplets can provide independent validation of the Mie technique retrieved vertical air motion using the cloud droplets as a tracer of vertical air motion.
Keywords
Mie notch; Doppler spectrum; cloud radar; vertical velocity; aircraft motion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beard, K. V., 1985: Simple altitude adjustments to raindrop velocities for Doppler radar analysis. J. Atmos. Ocean. Tech., 2, 468-471.   DOI
2 Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.
3 Fang, M., B. Albrecht, E. Jung, P. Kollias, H. Jonsson, and I. PopStefanija, 2017: Retrieval of vertical air motion in precipitating clouds using Mie scattering and comparison with in situ measurements. J. Appl. Meteor. Climatol., 56, 537-553, doi:10.1175/JAMC-D-16-0158.1.   DOI
4 Gossard, E. E., 1988: Measuring drop size distributions in clouds with a clear-air-sensing Doppler radar. J. Atmos. Ocean. Tech., 5, 640-649.   DOI
5 Giangrande, S. E., E. P. Luke, and P. Kollias, 2010: Automated retrievals of precipitation parameters using non-rayleigh scattering at 95 GHz. J. Atmos. Ocean. Tech., 27, 1490-1503, doi:10.1175/2010JTECHA1343.1.   DOI
6 Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243-248.   DOI
7 Kalogiros, J. A., and Q. Wang, 2002: Calibration of a radome-differential GPS system on a Twin Otter research aircraft for turbulence measurements. J. Atmos. Ocean. Tech., 19, 159-171.   DOI
8 Haimov, S., and A. Rodi, 2013: Fixed-antenna pointing-angle calibration of airborne Doppler cloud radar. J. Atmos. Ocean. Tech., 30, 2320-2335, doi:10.1175/JTECH-D-12-00262.1.   DOI
9 Heymsfield, G. M., 1989: Accuracy of vertical air motions from nadir-viewing Doppler airborne radars. J. Atmos. Ocean. Tech., 6, 1079-1082.   DOI
10 Jung, E., 2012: Aerosol-cloud-precipitation interactions in the trade wind boundary layer, Ph.D. dissertation, University of Miami, 184 pp.
11 Kollias, P., R. Lhermitte, and B. A. Albrecht, 1999: Vertical air motion and raindrop size distributions in convective systems using a 94 GHz radar. Geophys. Res. Lett., 26, 3109-3112.   DOI
12 Kollias, P., B. A. Albrecht, and F. Marks Jr., 2002: Why Mie?: Accurate observations of vertical air velocities and raindrops using a cloud radar. Bull. Amer. Meteor. Soc., 83, 1471-1483.   DOI
13 May, P. T., and D. K. Rajopadhyaya, 1996: Wind profiler observations of vertical motion and precipitation microphysics of a tropical squall line. Mon. Wea. Rev., 124, 621-633.   DOI
14 Kollias, P., B. A. Albrecht, and F. Marks Jr., 2003: Cloud radar observations of vertical drafts and microphysics in convective rain. J. Geophys. Res., 108, 4053, doi:10.1029/ 2001JD002033.   DOI
15 Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars: new frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 1608-1624. doi: 10.1175/BAMS-88-10-1608.   DOI
16 Lee, W.-C., P. Dodge, F. D. Marks Jr., and P. H. Hildebrand, 1994: Mapping of airborne Doppler radar data. J. Atmos. Ocean.Tech., 11, 572-578.   DOI
17 Lhermitte, R. M., 1988: Observations of rain at vertical incidence with a 94 GHz Doppler radar: An insight on Mie scattering. Geophys. Res. Lett., 15, 1125-1128.   DOI
18 Lhermitte, R. M., 2002: Centimeter and Millimeter Wavelength Radars in Meteorology. A&A Printing, 550 pp.
19 Mie, G., 1908: Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann. Phys., 330, 377-445.   DOI
20 Papoulis, A., and S. U. Pallai, 2004: Probability, Random Variables, and Stochastic Processes. McGraw Hill, 852 pp.
21 Probert-Jones, J. R., and W. G. Harper, 1961: Vertical air motion in showers as revealed by Doppler radar. Proc. Ninth Weather Radar Conf., Kansas City, MO, Amer. Meteor. Soc., 23-26.
22 Wakasugi, K., A. Mizutani, M. Matsuo, S. Fukao, and S. Kato, 1986: A direct method for deriving drop-size distributions and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Ocean. Tech., 3, 623-629.   DOI
23 Rajopadhyaya, D. K., P. T. May, R. C. Cifelli, S. K. Avery, C. R. Williams, W. L. Ecklund, and K. S. Gage, 1998: The effect of vertical air motions on rain rates and median volume diameter determined from combined UHF and VHF wind profiler measurements and comparisons with rain gauge measurements. J. Atmos. Ocean. Tech., 15, 1306-1319.   DOI
24 Rogers, R. R., D. Baumgardner, S. A. Ether, D. A. Carter, and W. L. Ecklund, 1993: Comparison of raindrop size distributions measured by radar wind profiler and by airplane. J. Appl. Meteor., 32, 694-699.   DOI