• Title/Summary/Keyword: directional noise

Search Result 294, Processing Time 0.02 seconds

Two-Microphone Binary Mask Speech Enhancement in Diffuse and Directional Noise Fields

  • Abdipour, Roohollah;Akbari, Ahmad;Rahmani, Mohsen
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.772-782
    • /
    • 2014
  • Two-microphone binary mask speech enhancement (2mBMSE) has been of particular interest in recent literature and has shown promising results. Current 2mBMSE systems rely on spatial cues of speech and noise sources. Although these cues are helpful for directional noise sources, they lose their efficiency in diffuse noise fields. We propose a new system that is effective in both directional and diffuse noise conditions. The system exploits two features. The first determines whether a given time-frequency (T-F) unit of the input spectrum is dominated by a diffuse or directional source. A diffuse signal is certainly a noise signal, but a directional signal could correspond to a noise or speech source. The second feature discriminates between T-F units dominated by speech or directional noise signals. Speech enhancement is performed using a binary mask, calculated based on the proposed features. In both directional and diffuse noise fields, the proposed system segregates speech T-F units with hit rates above 85%. It outperforms previous solutions in terms of signal-to-noise ratio and perceptual evaluation of speech quality improvement, especially in diffuse noise conditions.

Performance Enhancement of Speech Intelligibility in Communication System Using Combined Beamforming (directional microphone) and Speech Filtering Method (방향성 마이크로폰과 음성 필터링을 이용한 통신 시스템의 음성 인지도 향상)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.334-337
    • /
    • 2005
  • The speech intelligibility is one of the most important factors in communication system. The speech intelligibility is related with speech to noise ratio. To enhance the speech to noise ratio, background noise reduction techniques are being developed. As a part of solution to noise reduction, this paper introduces directional microphone using beamforming method and speech filtering method. The directional microphone narrows the spatial range of processing signal into the direction of the target speech signal. The noise signal located in the same direction with speech still remains in the processing signal. To sort this mixed signal into speech and noise, as a following step, a speech-filtering method is applied to pick up only the speech signal from the processed signal. The speech filtering method is based on the characteristics of speech signal itself. The combined directional microphone and speech filtering method gives enhanced performance to speech intelligibility in communication system.

  • PDF

Generalized Directional Morphological Filter Design for Noise Removal

  • Jinsung Oh;Heesoo Hwang;Changhoon Lee;Younam Kim
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.115-119
    • /
    • 2002
  • In this paper we present a generalized directional morphological filtering algorithm for the removal of impulse noise, which is based on a combination of impulse noise detection and a weighted rank-order morphological filtering technique. For salt (or pepper) noise suppression, the generalized directional opening (or closing) filtering of the input signal is selectively used. The detection of impulse noise can be done by the geometrical difference of opening and closing filtering. Simulations show that this new filter has better detail feature preservation with effective noise reduction compared to other nonlinear filtering techniques.

  • PDF

A Study on the Active Noise Control System for Road Noise Reduction Implementation and Characterization of Directional and Non-directional Speaker (도로 소음 저감용 능동소음 제어시스템의 구현과 지향성 및 무지향성 스피커의 특성 고찰)

  • Moon, Hak-Ryong;Lim, You-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.192-197
    • /
    • 2013
  • Road traffic noise barriers being used to reduce the noise, but the city surroundings inhibition, ecosystem disturbance, and it is difficult to maintain. Can enhance or complement the existing noise barrier performance, so that it is necessary to develop an electronic noise-reduction system In this paper, we proposed an electronic road noise reduction devices to reduce road noise for a DSP-based signal processing and analog signal input-output controller. In order to verify the control performance, we performed noise reduction experimentation of ANC by filtered-X LMS algorithm and traffic noise signal injection. The controller is equipped with noise reduction algorithms were tested on the characteristics of directional and omnidirectional speaker.

Wiener filtering-based ambient noise reduction technique for improved acoustic target detection of directional frequency analysis and recording sonobuoy (Directional frequency analysis and recording 소노부이의 표적 탐지 성능 향상을 위한 위너필터링 기반 주변 소음 제거 기법)

  • Hong, Jungpyo;Bae, Inyeong;Seok, Jongwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.192-198
    • /
    • 2022
  • As an effective weapon system for anti-submarine warfare, DIrectional Frequency Analysis and Recording (DIFAR) sonobuoy detects underwater targets via beamforming with three channels composed of an omni-direcitonal and two directional channels. However, ambient noise degrades the detection performance of DIFAR sonobouy in specific direction (0°, 90°, 180°, 270°). Thus, an ambient noise redcution technique is proposed for performance improvement of acoustic target detection of DIFAR sonobuoy. The proposed method is based on OTA (Order Truncate Average), which is widely used in sonar signal processing area, for ambient noise estimation and Wiener filtering, which is widely used in speech signal processing area, for noise reduction. For evaluation, we compare mean square errors of target bearing estmation results of conventional and proposed methods and we confirmed that the proposed method is effective under 0 dB signal-to-noise ratio.

A New Extraction Method for the Radiation Efficiency and Radiation Directional Coefficient (방사효율과 방사방향 계수에 대한 새로운 산출기법 연구)

  • Jung, Woo-Jin;Lee, Jong-Ju;Kang, Myung-Hwan;Jeon, Jae-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.93-101
    • /
    • 2014
  • Underwater radiated noise is the key in acoustic stealth performance of modern naval ships. The underwater radiated noise predicted by the hull vibration with radiation efficiency cannot always give the information of radiation pattern which is essential to analyze of detection probability by enemy and to improve the operational performance of the naval ship. The radiation pattern of underwater radiated noise is able to be obtained with radiation efficiency and radiation directional coefficient. In this paper, a new method to extract the radiation efficiency and radiation directional coefficient is suggested and proved with the simulation and experiment by using cylindrical shell of 70 cm diameter in air.

Active Noise Control in a Duct With Reflected Wave (반사파가 있는 관내의 능동 소음제어)

  • 오상헌;김양한
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.187-198
    • /
    • 1994
  • This study is to describe the effects of the duct termination conditions conditions upon the active noise attenuation system. The adaptive filtering algorithm using FIR filter is implemented for duct noise attenuation. To avoid the instability caused by the acoustic feedback, two methods are considered. One is to use a compensating FIR filter. The other is to utilize uni-directional detecting microphone and uni-directional control speaker. Experimental results show that the reflections of sound from duct terminations greatly reduce the performance of ANC system. The directionality of detecting microphone and control speaker is a major factor to decide ANC performance. When there are some reflections from both duct terminations, the noise attenuation using finite FIR filter is not enough to model the duct plant. Especially, the reflection from the upstream termination reduces the noise attenuation in the frequencies related to the distance between control speaker and upstream termination. The performance of the noise attenuation is found to be largely enhanced by using uni-directional coupler, both on detecting microphone and control speaker, even if the duct system has an arbitrary termination conditions.

  • PDF

Adaptive Beamforming Applied to Bearing Estimation of DIFAR Signal with Highly Directional Noise (높은 방향성 소음환경에서 DIFAR 수신센서 신호의 적응 빔형성에 의한 방위추정)

  • Shin, Kee-Cheol;Kim, Jea-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.474-481
    • /
    • 2011
  • Conventional beamforming is ineffective in producing directional information in system with sparse degree of the freedom such as DIFAR (DIrectional Frequency Analysis and Recording) sonobuoy and in the presence of high directional noise. In this paper, Adaptive beamforming techniques are applied to produce directional spectra from a small number of sensors in highly directional noise environment. Conventional method as well as minimum variance and eigenvectors as adaptive method are evaluated via numerical test and real data.

The Characteristics of Noise Figure in Bi-directional Fiber Ring Laser Gain Clamped EDFA (양방향 발진고리형 고정이득 EDFA에서의 잡음지수 특성)

  • Kim, Ik-Sang;Kim, Chang-Bong;Lee, Hyeon-Jae;Myeong, Seung-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.55-62
    • /
    • 2002
  • FRLGC(Fiber Ring laser Gain Clamped) EDFA Is demonstrated for an automatic gain control in hi-directional ADM(Add Drop Multiplexer) node configuration. Specifically, we investigate hi-directional characteristics of noise figure. Assuming a hi-directional small signal input, noise figures for forward or backward signal input are calculated using average inversion algorithm, according to the propagating directions and lasing wavelengths of a compensating signal. The operating condition of FRLGC-EDFA may be optimized with a backward lasing and short lasing wavelength in the aspect of hi-directional noise figure characteristics.

The Effect of Input Noise for Directional Frequency Response Functions (방향성 주파수 응답함수에서 입력 잡음의 영향)

  • Kang, Sung-Woo;Seo, Yun-Ho;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.735-741
    • /
    • 2008
  • Identification of asymmetry and anisotropy of rotor system is important for diagnosis of rotating machinery. Directional frequency response functions (dFRFs) are known to be a powerful tool in effectively detecting the presence of asymmetry or anisotropy. In this paper, an input noise effect of dFRFs for rotors is estimated, when both asymmetry and anisotropy are present. The normalized random errors of the dFRFs are calculated to verify the validity of the method, which is demonstrated by numerical simulation with a simple rotor model.

  • PDF