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Two-microphone binary mask speech enhancement 
(2mBMSE) has been of particular interest in recent 
literature and has shown promising results. Current 
2mBMSE systems rely on spatial cues of speech and noise 
sources. Although these cues are helpful for directional 
noise sources, they lose their efficiency in diffuse noise 
fields. We propose a new system that is effective in both 
directional and diffuse noise conditions. The system 
exploits two features. The first determines whether a given 
time–frequency (T–F) unit of the input spectrum is 
dominated by a diffuse or directional source. A diffuse 
signal is certainly a noise signal, but a directional signal 
could correspond to a noise or speech source. The second 
feature discriminates between T–F units dominated by 
speech or directional noise signals. Speech enhancement is 
performed using a binary mask, calculated based on the 
proposed features. In both directional and diffuse noise 
fields, the proposed system segregates speech T–F units 
with hit rates above 85%. It outperforms previous 
solutions in terms of signal-to-noise ratio and perceptual 
evaluation of speech quality improvement, especially in 
diffuse noise conditions. 
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I. Introduction 

Speech enhancement systems remove the interfering noise 
signal from the input noisy signal(s) to improve speech quality 
or intelligibility. These systems are highly beneficial in voice-
based applications, such as telecommunication, automatic 
speech recognition (ASR) and hearing aid devices lose 
performance in the presence of background noise.  

Among existing speech enhancement approaches, binary 
mask (BM) methods have shown promising results [1]–[6]. 
These methods emulate the human ear’s capability to mask a 
weaker signal by a stronger one [7]. This goal is achieved by 
eliminating spectral components in which the local energy of 
the speech signal is smaller than that of the noise. Such 
components do not contribute to the understanding of the 
underlying utterance and eliminating them will improve speech 
intelligibility for normal and hearing-impaired listeners ([3] and 
[8]), as well as the accuracy in ASR systems ([2], [6], and [9]).  

BM solutions are broadly categorized into single- and two-
microphone methods. Single-microphone methods rely on 
spectral cues for speech/noise discrimination. These cues include 
pitch continuity [5], harmonicity [6], a-priori SNR estimation 
([1] and [10]), and long-term information about the spectral 
envelope ([4] and [11]). Due to the availability of only one signal, 
these methods cannot use spatial cues such as interaural time 
difference (ITD) and interaural level difference (ILD), which are 
highly useful in source separation ([5] and [12]–[16]).  

On the other hand, two-microphone BM speech 
enhancement (2mBMSE) methods recruit localization cues 
along with spectral information to gain a better insight into 
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acoustical situations. For example, [12], [13], and [16] find the 
location of peaks in a two-dimensional histogram of ITD and 
ILD features and associate each peak to a source. References 
[2] and [16] employ localization cues to train a classifier for 
separating sources with different directions of arrival (different 
ITDs). In [14], ITD is used to estimate the local signal-to-noise 
ratio (SNR) before exploiting it for speech segregation. 

Most 2mBMSE methods rely on localization cues for speech 
segregation.1) But, these cues are only useful when each sound 
source is located at a single point; hence, each signal will be 
arriving from a specific direction. Although this condition 
holds for speech and directional noise sources, in various 
environments the noise is diffuse and does not arrive from a 
specific direction (for example, consider restaurants). In these 
environments, traditional two-microphone BM methods lose 
their performance [17]. 

In this paper, we propose a 2mBMSE system with high 
performance in both directional and diffuse noise conditions. 
We employ two-channel features that discriminate between 
directional and diffuse noise environments, as well as 
separating speech and noise T–F units accordingly. The 
proposed system learns the rules of diffuse/directional source 
discriminations, as well as rules of speech/noise separation for 
each of these noise fields. The learned rules are then used to 
calculate a BM for denoising input signals.. 

In short, the contributions of this paper include: (a) 
incorporating new two-microphone features for BM 
calculation, (b) proposing a simple and effective algorithm for 
BM calculation based on the employed features, and (c) 
proposing a 2mBMSE system with acceptable performance in 
both directional and diffuse noise fields. 

The detailed description of the proposed system is given in 
Section II. Then Section III details the experimental setup and 
the evaluation process that validates the performance of the 
system. Finally, the paper concludes with Section IV. 

II. System Description 

The proposed system is portrayed in Fig. 1. The input signal 
of microphone i can be written as 

( ) ( ) ( ) for {1, 2},i i ix t s t d t i          (1) 

where si(t) and di(t) denote, respectively, the speech and 
additive noise signals received at microphone i. By dividing 
this signal into overlapping frames, applying a window, and 
calculating its fast Fourier transform (FFT), the spectrum of 
this signal is obtained as 

                                                               
1) Other works employ supplementary cues (such as pitch period) in conjunction with 

localization cues; for example see [18] and [19]. 

 

Fig. 1. Block diagram of proposed system. 
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( , ) ( , ) ( , ) for {1,2},i i iX k S k D k i         (2) 

where capital letters show the short-time Fourier transform 

(STFT) of their lowercase counterparts and λ and k represent 

frame and frequency bin indices, respectively. Based on the 

spectra of the input signals, the set of features ( , )F k


 is 

extracted to calculate the binary mask as 

1

1

( , ) ( ( , ))

1 if ( , ) is an SD T-Funit,

0 if ( , ) is an ND T-Funit,

BM k g F k

X k

X k

 






 




    (3)  

where g(.) is a function that assigns the values 1 and 0 to 

speech-dominated (SD) and noise-dominated (ND) units, 

respectively. By “SD units” we mean T–F units in which the 

power of speech is greater than that of the noise. In other  

words, the T–F unit 1( , )X k  is SD, if and only if 
2 2

1 1( , ) ( , )S k D k  . The ND units are defined similarly.  
The BM is then applied to the spectrum of the reference 

signal (signal of microphone 1) to get the enhanced spectrum 

1
ˆ( , ) ( , ) ( , ).S k BM k X k              (4) 

Finally, the enhanced signal is obtained using Inverse FFT 
(IFFT) and overlap-add (OLA) operations  

ˆˆ( ) OLA{IFFT[ ( , )]}.s n S k           (5) 

One of the challenges in 2mBMSE systems is which features 
to use. Existing 2mBMSE methods utilize localization cues 
such as ITD and ILD (for example, see [2], [5], [12]–[16], [20], 
and [21]). The assumption behind using these localization cues 
is that the speech and noise sources are positioned at fixed 
locations, and thus are emitted from specific directions of 
arrival. Although this assumption holds for environments with 
directional noise sources (such as car and street noise), it is not 
true in environments such as restaurants with diffuse noise 
signals. By “diffuse” we mean that the noise signal arrives 
from different directions with equal power. In these 
environments, the localization cues lose their meaning; hence, 
the performance of corresponding methods drops drastically. 
To have acceptable performance in both directional and diffuse 
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noise fields, we propose two new features to be used. These 
features and the motivations for using them are given in 
Section II-1. 

Another challenge in 2mBMSE methods is to decide upon 
the filter calculation algorithm (the function g(.)). The filter 
calculation can be supervised or unsupervised. For example, 
[12]–[16], [20], and [21] work in an unsupervised manner by 
clustering T–F units based on their ITD and ILD values, and 
then assigning each cluster to a source. On the other hand, the 
methods of [2], [5], and [22] are supervised solutions that 
employ localization cues to train a classifier in advance. This is 
then utilized for mask calculation. In this paper, we adopt a 
supervised solution that learns a simple decision-making 
algorithm based on the proposed features. This algorithm is 
described in Section II-2.  

1. Feature Extraction 

We propose two features for BM calculation. These features 
are introduced in this section. 

A. Coherence Feature  

The “coherence” of the two spectra 1( , )X k  and 

2 ( , )X k  is defined as [23] 

1 2

1 2

( , )
( , ) ,

( , ) ( , )

X X

X X

P k
COH k

P k P k




 



       (6) 

where ( , )
iXP k  is the smoothed spectrum of signal xi, 

{1,2}.i  This is calculated as 
2

( , ) ( 1, ) (1 ) ( , ) .
i iX X iP k P k X k          (7) 

The smoothed cross (power) spectral density (CPSD) of 

1( , )X k  and 2 ( , )X k  is denoted by ),(
21

kP XX   and 
computed as 

1 2 1 2

*
1 2( , ) ( 1, ) (1 ) ( , ) ( , ).X X X XP k P k X k X k         (8) 

In the above relations, α is the smoothing parameter (α=0.7 
is used in our implementations) and * denotes the conjugate 
transpose operation. 

The coherence feature has been widely used for speech 
enhancement [23]–[27]. The coherence of two signals shows 
the level of correlation or similarity of two signals. For a 
directional source, the signals received at the two microphones 
are highly similar to each other (they only differ in their time of 
arrival and amplitude attenuation). So, their coherence is near 
one. But for a diffuse source, the received signals have lower 
similarity; hence, their coherence is noticeably smaller than one. 
This property is shown in Fig. 2. This figure depicts the 
coherence of two spectra for 256 sub-bands of a frame for  

 

Fig. 2. Coherence values for 256 sub-bands of a frame for 
directional and diffuse signals. 
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Fig. 3. Histogram of COH(λ, k): (a) diffuse-dominated T–F units 
and (b) directional-dominated T–F units. 
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directional and diffuse signals. The directional signal is a clean 
speech signal played at 30° angle. The diffuse signal is a two-
microphone babble noise signal recorded in a crowded 
cafeteria [28]–[30]. The microphones were 180 mm away 
from each other. According to Figs. 3(a) and 3(b), it is observed 
that coherence takes different ranges of values for diffuse and 
directional sources. So, it is capable of determining whether a 
T–F unit is arriving from a directional or diffuse source.  

The above observation describes the behavior of the 
coherence feature when only a single source signal exists (that 
is, when each T–F unit of the spectrum comes from either the 
diffuse or directional source). We now consider situations 
where both diffuse and directional sources are active 
simultaneously. Examples of these situations are environments 
with diffuse noise and a single speaker (for example, someone 
in a restaurant talking on his mobile phone). In these situations, 
any T–F unit of the spectrum possibly contains components of 
both directional and diffuse signals. The coherence feature has 
the potential to determine whether a T–F unit is dominated by 
its diffuse or directional component. This property of the 
coherence feature, which has recently been pointed out in [31] 
and [32], can be observed in Fig. 3. Figures 3(a) and 3(b) 
depict, respectively, the histogram of the coherence feature for 
diffuse-dominated and directional-dominated T–F units in the 
sub-band centered at 2.5 kHz. The signals in this experiment 
are the same signals used in Fig. 2; however, the signals are 
played simultaneously. The two signals were mixed at 5 dB 
SNR level. Similar behavior of the coherence feature could be 
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observed for other sub-bands and SNR levels, and noise types. 
If a T–F unit is a diffuse-dominated, it is undoubtedly 
dominated by a noise source because anechoic speech signals 
cannot be diffuse (they always arrive from a single direction). 
So, if COH(λ, k) is far from one, we can assign that T–F unit to 
a noise source. On the other hand, if COH(λ, k) is near to one, 
the corresponding T–F unit is dominated by a directional 
source. This source could be a speech or directional noise 
source. To discriminate between these two directional sources, 
phase error (PE) is helpful. 

B. PE 

The PE of ),(1 kX  and ),(2 kX   is defined as [33] 

( , ) ( , ) 2π ,PE k k k ITD               (9) 

where 1 2( , ) ( , ) ( , )k X k X k        and ITD is the 

time-delay-of-arrival of signals x1(t) and x2(t). The ( , )PE k  

values are constrained to the interval (–π, π].  
This feature is used in several papers for speech 

enhancement (for example, see [29] and [33]). It is shown [33] 
that PE is near zero for a clean speech signal and its absolute 
value increases as SNR is decreased. This behavior is restricted 
to directional noise conditions because ITD makes no sense in 
diffuse environments; as a result, the PE estimation will be 
unreliable in these environments. The SNR-like behavior of the 
PE feature makes it possible to separate SD and ND T–F units 
in directional noise conditions. PE(λ, k) is centered around zero 
for SD T–F units, and is far from zero (around ±π) for ND T–F 
units. This property is shown in Fig. 4. In this figure, the 
histogram of PE(λ, k) is drawn for SD and ND samples at a 
frequency band centered at 1 kHz. The noise and speech 
signals were played at +30° and –30° direction of arrivals, 
respectively. We used street noise in this experiment with 
overall 0 dB SNR. It is seen that the PE feature takes different 
values for SD and ND samples. 

Finally, we include the frequency band index, k, to the 
feature set, because we expect the system to learn BM 
calculation rules for each sub-band separately. So, the final 
proposed feature set is as follows: 

( , ) , ( , ), ( , ) .F k k COH k PE k  


        (10) 

 

Fig. 4. Histogram of PE(λ, k) at frequency band centered at 
1 kHz: (a) speech-dominated T–F units and (b) noise-
dominated T–F units. 
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2. BM Calculation 

According to the characteristics of the coherence and PE 
features, a simple solution for BM calculation, which works in 
both diffuse and directional noise conditions, could be similar 
to the following algorithm: 

if |COH(λ, k)| < δ(k)   
  BM(λ, k) = 0;  
else     
   if |PE(λ, k)| < ε(k) 
    BM(λ, k) = 1;  
   else  
    BM(λ, k) = 0; 

where 0<δ(k)<1 is a threshold value on coherence for 
discriminating diffuse and directional sources in the kth sub-
band and 0<ε(k)<π is a threshold value on PE for separating 
SD and ND T–F units in the kth sub-band in directional source 
conditions. If the coherence is noticeably smaller than one at 
the given T–F unit, that T–F unit is dominated by its diffuse 
component. So, the algorithm considers that T–F unit as ND 
and sets the corresponding BM cell to zero. But, if the 
coherence is near to one, that T–F unit is dominated by a 
directional component that could be either speech or noise. To 
distinguish between these two cases, the algorithm checks the 
value of |PE(λ, k)|. If this value is near zero, that T–F unit is 
considered as SD and the corresponding BM cell is set to one. 
Otherwise, that T–F unit is classified as an ND unit, and the 
related BM cell is set to zero. 

Although the above algorithm seems to be simple, one 
should determine the threshold values δ(k) and ε(k) for each 
sub-band. To avoid the exhaustive process of threshold tuning, 
we take a supervised approach. We train a classifier that 
learns the BM calculation rules from a train set. The train set 
contains samples of both SD and ND classes in directional 
and diffuse noise fields. This classifier learns the above 
algorithm for SD/ND separation. The classifier receives the 
feature set ( , )F k


 as an input and generates outputs of 

zero and one for ND and SD classes, respectively. The 
performance of this classifier is reported in Section III-2 for 
different classifier types. 

III. Evaluation and Comparison 

To evaluate the proposed system, at first, we synthesized the 
train and test sets of SD and ND samples. Then these sets were 
used for training and testing the classifier. The trained classifier 
was subsequently utilized for BM calculation. The enhanced 
files were evaluated using objective measures. The details of 
the evaluation process and the corresponding results are 
described in the following subsections. 
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1. Dataset Description 

We selected 120 clean files (60 male and 60 female) from 
the TIMIT database [34]. The files were downsampled from  
16 kHz to 8 kHz. To make the two-microphone signals, we 
recruited the “image” method [35] with reverberation 
coefficient equal to zero. The speech source was placed in 
directions 30°, 75°, 120°, 165°, 210°, 255°, 300°, and 345° 
with respect to the perpendicular bisector of the connecting line 
of the two microphones. For each direction, the two signals 
received at the microphones were saved as the corpus of clean 
speech files. Similarly, to make the corpus of directional noise 
files, we placed a source of white noise in directions 10°, 55°, 
100°, 145°, 190°, 235°, 280°, and 325° and saved the received 
signals. In addition, to make the corpus of diffuse noise files, 
we placed eight noise sources simultaneously at the above-
mentioned directions and recorded the signals received at the 
two microphones. The signal of each source was randomly 
selected from a large noise file. Finally, to synthesize the 
corpuses of noisy files in directional and diffuse noise 
conditions, we mixed the utterances of the clean speech corpus 
and the files of directional and diffuse noise corpuses with    
–10 dB, –5 dB, 0 dB, 5 dB, 10 dB, and 15 dB SNR levels.2) 
For each recording, we also saved the clean and noise 
components of mixture received at the reference microphone 
(that is, microphone 1).  

Each pair of mixed noisy files x1(t) and x2(t) were divided 
into frames of 32 ms duration with 50% overlap. A Hanning 
window was applied to each frame, and its spectrum was 
calculated using 256-point FFT. Then the coherence and PE of 
each frequency bin were calculated. The ITD in (9) was 
estimated using the well-known GCC-PHAT method [36]. In 
addition, having the true noise and speech signals received at 
the reference microphone, the true local SNR of each T–F unit 
was determined as 

2
1

10 2
1

( , )
( , ) 10log

( , )

S k
SNR k

D k






 
 
 
 

.         (11) 

Finally, T–F units with true local SNRs greater than and less 
than the threshold Thr = 0 dB were considered as SD and ND 
data samples, respectively. 

The threshold value Thr affects the performance of the 
system. In [1], the effect of this value on the intelligibility of the 
enhanced signal is studied, and best intelligibility scores are 
achieved when the ideal binary mask (IdBM) is constructed 
with –12 dB ≤ Thr ≤ +12 dB. So, the authors of [1] have 
                                                               

2) It is worth pointing out that the overall SNR of the input files of the train set does not have 

a high impact on the performance of the system (thus, there is no need to consider all possible 

overall SNR levels in the train set). This is because the system works at the T–F level, and even 

in a file with a specific overall SNR, there are different local SNRs at the T–F level. So, the 

classifier will see different possible local SNR levels. 

proposed to use Thr = –6 dB for intelligibility improvement. 
This threshold value is also proposed in [8]. It is reported in [8] 
that an IdBM with Thr = –6 dB improves human speech 
recognition. Several other studies have also shown that a 
threshold value lower than 0 dB is suitable for both 
intelligibility and speech recognition (for example, see [37]–
[39]), especially when the input SNR is as low as –5 dB. While 
the above works focus on intelligibility improvement purposes, 
our experiments on different values of Thr showed that, for the 
purpose of speech quality improvement, threshold values 
smaller than 0 dB are not promising and will result in a 
noticeable amount of annoying residual noise. On the other 
hand, an IdBM with Thr = 0 dB removes the interfering noise 
to a large extent, without introducing noticeable speech 
distortion and results in an enhanced signal of higher quality. It 
is also confirmed in [40] that Thr = 0 dB is suitable for SNR-
gain purposes. For these reasons, we choose this threshold 
value in this contribution. 

The above process was performed for both diffuse and 
directional noisy files, and the samples were saved separately 
as diffuse and directional datasets. 

In addition, to study the performance of the system for 
different inter-microphone distances (IMDs), we performed the 
above process for IMDs of 180 mm, 66 mm, and 20 mm and 
saved the corresponding datasets separately. These IMDs 
correspond to the distance between pairs of microphones in a 
headset that we utilized for audio recording in real situations 
(more details are given in Section III-3). The 180 mm IMD 
corresponds to the average distance between a person’s ears 
and is related to applications such as binaural hearing aids. The 
smaller IMDs (that is, 66 mm and 20 mm) are desired in 
applications like two-microphone mobile phones. 

2. Classifier Training and Evaluation 

The performance of the 2mBMSE system depends on the 
accuracy of the SD/ND classifier. If an ND T–F unit is 
misclassified as an SD, its noise component will remain in the 
enhanced signal and will be heard as annoying audio artifacts. 
On the other hand, misclassifying an SD T–F unit as an ND, 
causes that T–F unit to be removed from the enhanced 
spectrum, which means  speech distortion will occur. To 
quantify these two classification errors, we measure the hit and 
false alarm (FA) rates of the classifier. The hit rate criterion 
measures the percentage of SD samples that are classified 
correctly. Higher hit rates mean that lower speech distortion 
will occur. The FA rate shows the percentage of ND samples 
that are misclassified as SD. The lower the value of FA, the 
lower the residual background noise.  

We evaluated the classifier performance through four-fold 
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cross validation. In other words, we randomly divided the 
noisy files into four subsets. Each time, three subsets were 
jointly used to train the classifier. The remaining subset was 
saved as a test set and used to measure the hit and FA rates of 
the classifier. The process of classifier training was performed 
separately for each IMD. Then each classifier was evaluated 
utilizing either diffuse or directional samples. The average of 
the evaluation criteria is shown in Table 1 for the four classifier 
types — namely, neural networks (NN) (with two hidden 
layers with 10 neurons each), decision tree (DT) with C4.5 
learning algorithm [41], Gaussian mixture model (GMM) with 
16 mixtures, and support vector machine (SVM). We report the 
experimental results of the different classifier types to show 
that the achieved performance does not depend on the utilized 
classifier; rather, it is due to the proposed set of features.  

According to Table 1, all the classifiers have consistently 
high hit rates for all IMDs. These results are comparable to 
other works, such as [3]. This behavior is observed for both 
diffuse and directional noise types. So, the noise reduction 
process will result in negligible speech distortion. It is also seen 
that the FA rate is small. Therefore, speech enhancement will 
be performed with a low amount of residual noise. The authors 
of [37] have argued that FA rates lower than 20% are needed 
for intelligibility improvement purposes. According to Table 1, 
this condition holds true for nearly all classifiers and IMDs. 

Among the studied classifier types, the DT classifier obtains 
the highest hit rates. So, we only consider this classifier in the 
following evaluations. Moreover, for the sake of brevity, we 
only consider the 180 mm IMD in the following evaluations.  

 

Table 1. Mean hit and FA rates in diffuse and directional conditions 
(%). 

Directional test set Diffuse test set 
Classifier IMD 

Hit FA Hit FA 

180 mm 86.42 19.35 85.91 18.94 

66 mm 85.81 20.61 85.41 19.74 NN 

20 mm 84.94 20.74 84.07 20.49 

180 mm 85.68 18.10 84.68 17.44 

66 mm 85.29 18.23 84.53 18.35 DT 

20 mm 85.37 18.80 84.36 19.01 

180 mm 83.76 17.89 84.24 19.57 

66 mm 82.49 18.59 82.98 19.73 GMM 

20 mm 82.60 18.86 82.36 20.66 

180 mm 84.34 17.18 84.58 18.21 

66 mm 84.82 18.03 83.91 19.94 SVM 

20 mm 84.09 18.30 83.39 19.72 

 

Table 2. Average hit and FA rates for each input SNR level. 

Directional test set Diffuse test set 
SNR 

Hit FA Hit FA 

–8 dB 87.31 18.90 85.90 18.18 

–3 dB 85.80 18.71 85.14 17.42 

7 dB 84.95 17.86 83.91 16.94 

12 dB 84.48 17.32 83.64 16.79 

 

Table 3. Average hit and FA rates for different angles between speech 
and noise sources. 

Angle Hit (%) FA (%) 

0° 85.48 18.90 

45° 84.70 16.87 

90° 86.52 17.90 

135° 83.79 17.72 

180° 84.47 18.61 

 

 
The results are consistent for other IMDs and classifier types. 

We also evaluated the SD/ND classifier in each SNR level 
separately. The hit and FA rates of the classifier for different 
input SNR levels are shown in Table 2. We used the same clean 
and noise files, as well as the same experimental setup, as 
described above. We considered –8 dB, –3 dB, 2 dB, 7 dB, and 
12 dB SNR levels in these experiments, which are not used in 
the training of the classifier. It is seen that the classifier 
performance does not depend on SNR level. The small 
differences between hit rates in Table 2 are consistent with 
results in [42]. 

We also evaluated the classification performance for 
different angles between speech and noise sources. We fixed 
the speech source at 10° and put the noise source at 10°, 55°, 
100°, 145°, and 190° (that results in angles of 0°, 45°, 90°, 135°, 
and 180° between speech and noise). The overall SNR level 
was set to 0 dB. The classification performance for each angle 
is shown in Table 3. It is seen that the results do not depend on 
the angle between speech and noise sources. This is because, 
unlike many 2mBMSE methods, we do not employ 
localization cues in our system. 

We also evaluated the system in echoic conditions. To do so, 
we employed the image method [35] to simulate a 10 m × 8 m 
× 3 m room with different reverberation coefficients. We used 
the same direction of arrivals for speech and noise sources, as 
described above. The speech and directional noise sources 
were 1 m and 3 m away from the microphones, respectively. 
The classification accuracy is shown in Table 4 for different 
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Table 4. Mean hit and FA rates for directional noise with reverberation.

Directional test set (SNR = 0 dB) Reverberation 
coefficient Hit (%) FA (%) 

0 86.52 17.90 

0.2 79.11 18.29 

0.4 73.92 18.38 

0.6 67.08 18.36 

0.8 60.33 18.43 

 

Table 5. Average hit and FA rates for different diffuse-to-directional 
noise level ratios. 

Diff./dir. ratio Hit (%) FA (%) 

–10 dB 86.64 19.27 

–5 dB 84.01 18.13 

0 dB 83.92 17.64 

5 dB 85.07 18.26 

10 dB 85.93 18.90 

 

 
reverberation coefficients (r). It is seen that hit rate decreases 
with r. This means that in highly reverberant situations, more 
speech segments are misclassified as noise. 

Finally, we considered the situation where a mixture of 
diffuse and directional noises is present. We considered the 
same configuration as described in Section III-1 for the 
generation of the test set. We considered the 0 dB SNR level 
with no reverberation. The babble and car noises were 
employed as diffuse and directional noises, respectively. These 
noise signals were selected from our recordings in real 
situations ([28]–[30]). We considered different diffuse-to-
directional level ratios and evaluated the hit and FA rates 
separately for each condition. The results are shown in Table 5. 
It is seen that the results do not change with diffuse-to-
directional level ratio. This behavior is assigned to the 
simultaneous employment of coherence and PE features, 
which are useful in diffuse and directional noise conditions, 
respectively.  

3. Speech Quality Evaluation 

To evaluate the quality of the enhanced signals, we utilized 
the DT classifier trained in the previous section for 180 mm 
IMD. But, the input noisy files are selected from the dataset 
recorded by our lab members in real situations ([28]–[30]). 
This dataset was recorded using four omnidirectional 
microphones installed on a headset on a dummy head. Half of  

 

Fig. 5. Configuration of microphones (A to D) [27]. 

B 

 

 
the recorded clean speech files were uttered by human speakers 
wearing the headset. Different pairs of microphones had   
180 mm, 66 mm, and 20 mm distance between them. The 
configuration of the microphones is shown in Fig. 5. In our 
experiments, we used the signals recorded using microphones 
with 180 mm distance (that is, the microphones on the ears). 
The clean speech signal was played from a loudspeaker 
installed on the mouth of the dummy head. Speech and noise 
signals were recorded separately using the same configuration. 
Speech files were recorded in a quiet room. Car noise files 
were recorded in a Peugeot 405 with the speed around 80 km/h. 
Babble noise signals were recorded in a cafeteria. To make the 
noisy signal with a desired SNR level, the noise signal of each 
microphone was scaled and added to speech signals received at 
that microphone. In these experiments, we considered –8 dB,  
–3 dB, 2 dB, 7 dB, and 12 dB input SNR levels, which are not 
used in the training of the classifiers. More than 30 minutes of 
noisy signals were prepared for each SNR level and each IMD. 

We used two objective evaluation criteria — namely, SNR 
improvement (SNRI) [43] and Perceptual Evaluation of 
Speech Quality (PESQ) measures [44]. SNRI determines the 
level of improvement of SNR in speech regions during a 
speech processing operation. The SNRI is computed by 
subtracting the SNR of the input signal from that of the output 
signal. The PESQ measure is a psychoacoustics-based measure 
that is correlated with subjective evaluation measures with 
correlation values around 0.8 [44]. The PESQ values range 
from –0.5 (for the worst case) to 4.5 (for the best case) [44]. 
The details of SNRI and PESQ calculation can be found in 
[43] and [44], respectively.  

We compare our proposed method with a two-channel 
Wiener filter (2CWF), Rickard and others [22], Roman and 
others [5], MESSL [12], and Roman+Wiener methods. To 
implement the 2CWF method, the smoothed spectrum and 
CPSD of input signals were computed using (7) and (8), 
respectively. We employed the minimum-statistics method [45] 
to estimate the noise power of each input signal, which was 
used to calculate the CPSD of a noise signal similar to that in 
(8). The Roman+Wiener baseline is the serial application of 
Roman and others [5] and single-microphone Wiener methods. 
Such a serial system is considered as a baseline for removing 
directional noises (using the Roman and others method) as well  
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Fig. 6. SNRI results: (a) directional car noise and (b) diffuse 
babble noise. 
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Fig. 7. PESQ results: (a) directional car noise and (b) diffuse 
babble noise. 
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as diffuse noises (using the Wiener filter). In the 
implementation of the Wiener filter, the noise power was 
estimated using the minimum-statistics method [45]. Roman 

and others’ and Rickard and others’ methods are selected for 
comparison because, similar to the proposed system, they are 
supervised 2mBMSE systems that rely on classification 
algorithms for BM calculation.  

The noisy files were enhanced using the proposed method as 
well as other studied methods. The SNRI and PESQ values 
were calculated for each enhanced file. The average of these 
values was calculated for each enhancement method and SNR 
level. The results are shown in Figs. 6 and 7 for directional and 
diffuse noise types. According to Figs. 6 and 7, although  

 

 

Fig. 8. Spectrograms comparison in diffuse noise condition. 
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(b) Noisy signal (babble, SNR level = 2 dB) 
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Fig. 9. SNRI results for directional noise in echoic conditions. 
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Fig. 10. PESQ scores for directional noise in echoic conditions.
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competing methods show acceptable performance in the case 
of directional noise, their performance drops dramatically in 
diffuse noise fields. This fact is due to the usage of localization 
cues, which are not meaningful in diffuse noise conditions. But 
the proposed method results in acceptable qualities in both 
diffuse and directional noise conditions. This behavior is 
assigned to the proposed features for BM calculation. 

To further compare our method with existing 2mBMSE 
methods in diffuse noise conditions, we compare the 
spectrograms of a file enhanced using the proposed method 
with that of one enhanced using the methods of Rickard and 
others, Roman and others, and MESSL (see Fig. 8). The clean 
file is selected from the NOIZEUS database [46]. The babble 
noise is selected from the corpus recorded in real conditions 
[28]–[30]. The clean and noise files are mixed at the 2 dB SNR 
level. Comparing the enhanced and noisy spectra, it is clearly 
seen that the proposed method outperforms other studied 
methods in noise removal as well as speech restoration in 
diffuse noise fields. To investigate the performance of the 
system in reverberant conditions, we conducted an experiment 
with the same setup as described in Section III-2. We set the 
reverberation coefficient (r) of the walls to 0, 0.2, 0.4, 0.6, and 
0.8 in the image method [35] and evaluated the SNRI and 
PESQ scores of the system for different input SNR levels. The 
results are shown in Figs. 9 and 10. It is seen that the  

 

Fig. 11. SNRI results of studied methods in echoic conditions 
(r = 0.2). 
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Fig. 12. PESQ scores of studied methods in echoic conditions 
(r = 0.2). 
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performance decreases as r increases. This is because in a 
highly reverberant environment, echoed signals make a semi-
diffuse condition, which is considered as noise in the proposed 
algorithm. We also compared the performance of the proposed 
system with that of studied methods in conditions with 
moderate reverberation (r = 0.2). The results are shown in  
Figs. 11 and 12. Comparing with Figs. 6 and 7, it is observed 
that even though the performance of the proposed method is 
decreased, it is still comparable to competing methods. 

IV. Summary and Conclusion 

We proposed a 2mBMSE system that works effectively in 
both directional and diffuse noise fields. The proposed system 
was compared with existing 2mBMSE systems, and its 
superiority was confirmed in terms of SNR improvement and 
PESQ scores. The system owes its high performance to the two 
features it employs. We showed that the coherence feature has 
the potential to determine whether a T–F unit is dominated by a 
diffuse noise or directional signal. We also showed that the PE 
feature is capable of discriminating between SD and ND T–F 
units in directional noise situations. Using these features, the 
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system was able to build an effective binary mask for 
separating SD and ND units in both directional and diffuse 
noise fields.  

It was shown that the performance of the system does not 
vary with the angle between speech and noise due to the usage 
of non-spatial cues. In highly reverberant conditions, SNR-gain 
decreased by 5 dB to 7 dB (analogous to one-level decrease of 
PESQ score). But, in moderate reverberation conditions, the 
PESQ decrease was only 0.2 and the proposed system 
outperformed the competing methods. 
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