• Title/Summary/Keyword: direct output feedback controller

Search Result 24, Processing Time 0.026 seconds

Force control of the direct-drive robot using learning controller (학습제어기를 이용한 직접구동형 로봇의 힘제어)

  • Hwang, Yeong-Yeun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1819-1826
    • /
    • 1997
  • Direct-drive robots are suitable to the position and force control with high accuracy, but it is difficult to design a controller because of the system's nonlinearity and link-interactions. This paper is concerned with the study of the force control of direct-drive robots. The proposed algorithm consists of feedback controllers and a neural network. After the completion of learning, the output of feedback controller is nearly equal to zero, and the neural network controller plays an important role in the control system. Therefore, the optimum retuning of parameters of feedback controllers is unnecessary. In other words, the proposed algorithm does not require any knowledge of the controlled system in advance. The effectiveness of the proposed algorithm is demonstrated by the experiment on the force control of the parallelogram link-type direct-drive robot.

Adaptive Actuator Failure Compensation Designs for Linear Systems

  • Chen, Shuhao;Tao, Gang;Joshi, Suresh M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • This paper surveys some existing direct adaptive feedback control schemes for linear time-invariant systems with actuator failures characterized by the failure pattern that some inputs are stuck at some unknown fixed or varying values at unknown time instants, and applications of those schemes to aircraft flight control system models. Controller structures, plant-model matching conditions, and adaptive laws to update controller parameters are investigated for the following cases for continuous-time systems: state tracking using state feed-back, output tracking using state feedback, and output tracking using output feedback. In addition, a discrete-time output tracking design using output feedback is presented. Robustness of this design with respect to unmodeled dynamics and disturbances is addressed using a modified robust adaptive law.

Position control of robots with uncertain parameters using output-feedback controller (출력제어기를 이용한 불학실 파라미터를 갖는 로봇의 위치제어)

  • ;;Ailon, Amit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.472-475
    • /
    • 1997
  • The principle objective of this paper is to explain and demonstrate the advantage of the output-feedback controller proposed by Ailon in [61 by using simulation and experimental results. Namely, the goal of this study is to design and implement a real-time controller for set-point regulation of a one-link rigid robot manipulator with unknown parameters using only position measurement. For implementation a direct drive one-link rigid robot manipulator is constructed and a TMS320C40 DSP systems board is used in implementing real-time control algorithm.

  • PDF

On Output Feedback Tracking Control of Robot Manipulators with Bounded Torque Input

  • Moreno-Valenzuela, Javier;Santibanez, Victor;Campa, Ricardo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.76-85
    • /
    • 2008
  • Motivated by the fact that in many industrial robots the joint velocity is estimated from position measurements, the trajectory tracking of robot manipulators with output feedback is addressed in this paper. The fact that robot actuators have limited power is also taken into account. Let us notice that few solutions for the torque-bounded output feedback tracking control problem have been proposed. In this paper we contribute to this subject by presenting a theoretical reexamination of a known controller, by using the theory of singularly perturbed systems. Motivated by this analysis, a redesign of that controller is introduced. As another contribution, we present an experimental evaluation in a two degrees-of-freedom revolute-joint direct-drive robot, confirming the practical feasibility of the proposed approach.

Force Control of Electro-Hydraulic Servo System using Direct Drive Valve for Pressure Control (압력제어용 직동 밸브를 이용한 전기.유압 서보시스템의 힘 제어)

  • Lee C.D.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.3
    • /
    • pp.14-19
    • /
    • 2004
  • The Direct Drive Valve used in this study contains a pressure-feedback-loop in itself, then it can eliminate nonlinearity such as the square-root-term in flow rate calculation and the change of bulk modulus of hydraulic oil. In this study, assuming that the dynamic characteristic of the DDV is modelled as a first order lag system, an parameter identification method using the input data and the output data is applied to obtain DDV's mathematical model. Then, a state feedback controller was designed to implement the force control of hydraulic system, and the control performance was evaluated.

  • PDF

Direct Learning Control for Linear Feedback Systems (선형피드백시스템에 대한 직접학습제어)

  • Ahn Hyun-sik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.76-80
    • /
    • 2005
  • In this paper, a Direct Learning Control (DLC) method is proposed for linear feedback systems to improve the tracking performance when the task of the control system is repetitive. DLC can generate the desired control input directly from the previously learned control inputs corresponding to other output trajectories. It is assumed that all the desired output functions given to the system have some relations called proportionality and it is shown by mathematical analysis that DLC can be utilized to genera additional control efforts for the perfect tracking. To show the validity and tracking performance of the proposed method, some simulations are performed for the tracking control of a linear system with a PI controller.

A Study on Position Control of the Direct Drive Robot Using Neural Networks (신경회로망을 이용한 직접 구동형 로봇의 위치제어에 관한 연구)

  • 신춘식;황용연;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.284-292
    • /
    • 1997
  • This paper is concerned with position control of direct drive robots. The proposed algorithm consists of the feedback controller and neural networks. Mter the completion of learning, the output of the feedback controller is nearly equal to zero, and the neural networks play an important role in the control system. Therefore, the optimum retuning of control parameters is unnecessary. In other words, the proposed algorithm does not need any knowledge of the con¬trolled system in advance. The effectiveness of the proposed algorithm is demonstrated by the experiment on the position control of a parallelogram link-type direct drive robot.

  • PDF

Direct Learning Control For Linear Feedback Systems

  • Ahn, Hyun-Sik;Park, Ki-Hong;Heo, Seung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.96-100
    • /
    • 2003
  • In this paper, a DLC method is proposed for linear feedback systems to improve the tracking performance when the task of the system is repetitive. DLC can generate the desired control input directly from the previously learned control inputs corresponding to other output trajectories. It is assumed that all the desired output functions considered in this paper have some relations called proportionality and it is shown by mathematical analysis that DLC can be utilized to generate additional control efforts for the perfect tracking. To show the validity and tracking performance of the proposed method, some simulations are performed for the tracking control of a linear system with a PI controller.

  • PDF

Identification and Control of a Electro-Hydraulic Servo System Using a Direct Drive Valve (압력제어용 DDV를 이용한 전기.유압 서보시스템의 식별 및 제어)

  • 이창돈;이상훈;곽동훈;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.124-130
    • /
    • 2003
  • The electro-hydraulic servo system with a servo valve is applied widely in force control. However, the composition of control system using a servo valve is difficult due to nonlinearities in the servo valve, such as square-root terms in flow equation. The electro-hydraulic servo system using a DDV(Direct Drive Valve) instead of a servo valve was proposed and it's characteristics was estimated. The DDV and whole system are modelled by parameter identification using the input-and-output data, then the models are verified by the comparison of simulation with experiment. Also, the state feedback controller has been designed based on this model, then the performance of the electro-hydraulic force servo system using a DDV is evaluated by simulation and experimental results.

Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity

  • Bagha, Ashok K.;Modak, Subodh V.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • This paper presents and compares three feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity. These are a) control strategy based on direct output feedback (DOFB) b) control strategy based on linear quadratic regulator (LQR) to reduce structural vibrations and c) LQR control strategy with a weighting scheme based on structural-acoustic coupling coefficients. The first two strategies are indirect control strategies in which noise reduction is achieved through active vibration control (AVC), termed as AVC-DOFB and AVC-LQR respectively. The third direct strategy is based on active structural-acoustic control (ASAC). This strategy is an LQR based optimal control strategy in which the coupling between the various structural and the acoustic modes is used to design the controller. The strategy is termed as ASAC-LQR. A numerical model of a 3-D rectangular box cavity with a flexible plate (glued with piezoelectric patches) and with other five surfaces treated rigid is developed using finite element (FE) method. A single pair of collocated piezoelectric patches is used for sensing the vibrations and applying control forces on the structure. A comparison of frequency response function (FRF) of structural nodal acceleration, acoustic nodal pressure, and piezoelectric actuation voltage is carried out. It is found that the AVC-DOFB control strategy gives equal importance to all the modes. The AVC-LQR control strategy tries to consume the control effort to damp all the structural modes. It is seen that the ASAC-LQR control strategy utilizes the control effort more intelligently by adding higher damping to those structural modes that matter more for reducing the interior noise.