• Title/Summary/Keyword: digital sensing

Search Result 924, Processing Time 0.031 seconds

Effects of spatial resolution on digital image to detect pine trees damaged by pine wilt disease

  • Lee, Seung-Ho;Cho, Hyun-Kook
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.260-263
    • /
    • 2005
  • This study was carried out to investigate the effects of spatial resolutions on digital image for detecting pine trees damaged by pine wilt disease. Color infrared images taken from PKNU-3 multispectral airborne photographing system with a spatial resolution of 50cm was used as a basic data. Further test images with spatial resolutions of 1m, 2m and 4m were made from the basic data to test the detecting capacity on each spatial resolution. The test was performed with visual interpretation both on mono and stereo modus and compared with field surveying data. It can be conclude that it needs less than 1m spational resolutions or 1m spatial resolutions with stereo pair in order to detect pine trees damaged by pine wilt disease.

  • PDF

Low-Voltage Current-Sensing CMOS Interface Circuit for Piezo-Resistive Pressure Sensor

  • Thanachayanont, Apinunt;Sangtong, Suttisak
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • A new low-voltage CMOS interface circuit with digital output for piezo-resistive transducer is proposed. An input current sensing configuration is used to detect change in piezo-resistance due to applied pressure and to allow low-voltage circuit operation. A simple 1-bit first-order delta-sigma modulator is used to produce an output digital bitstream. The proposed interface circuit is realized in a 0.35 ${\mu}m$ CMOS technology and draws less than 200 ${\mu}A$ from a single 1.5 V power supply voltage. Simulation results show that the circuit can achieve an equivalent output resolution of 9.67 bits with less than 0.23% non-linearity error.

  • PDF

압축센싱 기반의 무선통신 시스템

  • Reu, Na-Tan;Sin, Yo-An
    • The Magazine of the IEIE
    • /
    • v.38 no.1
    • /
    • pp.56-67
    • /
    • 2011
  • As a result of quickly growing data, a digital transmission system is required to deal with the challenge of acquiring signals at a very high sampling rate, Fortunately, the CS (Compressed Sensing or Compressive Sensing) theory, a new concept based on theoretical results of signal reconstruction, can be employed to exploit the sparsity of the received signals. Then, they can be adequately reconstructed from a set of their random projections, leading to dramatic reduction in the sampling rate and in the use of ADC (Analog-to-Digital Converter) resources. The goal of this article is provide an overview of the basic CS theory and to survey some important compressed sensing applications in wireless communications.

  • PDF

FOREST MONITORING PROTOTYPE SYSTEM USING WEB MAPPING TECHNOLOGY

  • Kawahito, Shinobu;Kuroiwa, Kaori;Sobue, Shin-ichi;Ochiai, Osamu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.793-794
    • /
    • 2003
  • Forest fire monitoring prototype system was developed by National Development Agency of Japan (NASDA) and the Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF) to verify the usefulness of interoperabile system to study new services of Earth observation satellite data distribution for a practical application. In this system, a standard interface of Web based GIS technology, OpenGIS Consortium (OGC) technology, was adopted. This system is also expected to encourage data sharing activities in Digital Asia Network (DAN) as a demonstration system.

  • PDF

Assessing Sea Surface Temperature in the Yellow Sea Using Satellite Remote Sensing Data

  • Lee, Kyoo-seock;Kang, Hee-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.39-47
    • /
    • 1990
  • The first Marine Observation Satellite(MOS) was launched by National Space Development Agency of Japan on February 19, 1987, and it is equipped with three sensons covering visible, infrared, and microwave region. One of them is Visible and Thermal Infrared Radiometer(VTIR) whose main objective is to detect the Sea Surface Temperature(SST). The objective of this study was to process the MOS data using Cray-2 supercomputer, and to assess the SST in the Yellow Sea. In order to implement this objective, the linear regression model between the ground truth data and the corresponding digital number of VTIR in MOS was used to establish the relationship. After testing the significance of the regression model, the SST map of the whole Yellow Sea was derived based on the model. The digital SST map representing the study area showed certain pattern about the SST of Yellow Sea in March and April. In conclusion, the VTIR data in MOS is also useful in investigating SST which provides the information about the Yellow Sea water current in the spring.

Compressed Sensing and the Applications of Wireless Communications (압축 감지 기술과 무선통신 응용)

  • Hwang, Dae-Sung;Kim, Dae-Sung;Choi, Jin-Ho;Ha, Jeong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.32-39
    • /
    • 2009
  • Compressed Sensing is a method to sample analog signals at a rate under the Nyquist rate. With this scheme, it is possible to represent signals with a relatively smaller number of measurements than that of the conventional sampling method, and the original signals are reconstructed with high probability from the acquired measurements using the linear programming. Compressed sensing allows measurement time and/or the amount of ADC (analog-to-digital converter) resources for the signal acquisitions to be reduced. In this paper, we presents the backgrounds of the compressed sensing, a way to acquire measurements from an analog signal with a random basis, and the signal recovery method. Also we introduce applications of compressed sensing in wireless communications.

Signal Processing Logic Implementation for Compressive Sensing Digital Receiver (압축센싱 디지털 수신기 신호처리 로직 구현)

  • Ahn, Woohyun;Song, Janghoon;Kang, Jongjin;Jung, Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.437-446
    • /
    • 2018
  • This paper describes the real-time logic implementation of orthogonal matching pursuit(OMP) algorithm for compressive sensing digital receiver. OMP contains various complex-valued linear algebra operations, such as matrix multiplication and matrix inversion, in an iterative manner. Xilinx Vivado high-level synthesis(HLS) is introduced to design the digital logic more efficiently. The real-time signal processing is realized by applying dataflow architecture allowing functions and loops to execute concurrently. Compared with the prior works, the proposed design requires 2.5 times more DSP resources, but 10 times less signal reconstruction time of $1.024{\mu}s$ with a vector of length 48 with 2 non-zero elements.

A Wireless Digital Water Meter System using Low Power Sensing Algorithm (저전력 센싱 알고리즘을 활용한 무선 디지털 수도 계량기 시스템)

  • Eun, Seong-Bae;Shin, Gang-Wook;Lee, Young-Woo;Oh, Seung-Hyueb
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.315-321
    • /
    • 2009
  • Remote water meter monitoring is essential in U-city applications, whoγe digital water meter is a key component. While there are several kinds of water meters, the way to use has sensors has the merit of better preciseness, but the drawback of more power consumption. In this paper, we suggest an advanced sensing algorithm to diminish the power consumption while keeping the quality of preciseness. Our approach is to use less precise hall sensor for detecting the start of water impeller rotation with lower power consumption. During the rotation, a high precision hall sensor is used to meter the amount of water consumption. Our algorithm is analyzed to get 2 times lower power consumption than the previous algorithm.

Two-step Holographic Imaging Method based on Single-pixel Compressive Imaging

  • Li, Jun;Li, Yaqing;Wang, Yuping;Li, Ke;Li, Rong;Li, Jiaosheng;Pan, Yangyang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.146-150
    • /
    • 2014
  • We propose an experimental holographic imaging scheme combining compressive sensing (CS) theory with digital holography in phase-shifting conditions. We use the Mach-Zehnder interferometer for hologram formation, and apply the compressive sensing (CS) approach to the holography acquisition process. Through projecting the hologram pattern into a digital micro-mirror device (DMD), finally we will acquire the compressive sensing measurements using a photodiode. After receiving the data of two holograms via conventional communication channel, we reconstruct the original object using certain signal recovery algorithms of CS theory and hologram reconstruction techniques, which demonstrated the feasibility of the proposed method.

Monitoring Flood Disaster Using Remote Sensing Data

  • Chengcai, Zhang;Xiuwan, Chen;Gaolong, Zhu;Wenjiang, Zhang;Peng, Sun-Chun
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.280.2-286
    • /
    • 1998
  • Flood is the main natural disaster mostly in the world. It is a care problem to prevent flood disaster generally. The frequency of flood disaster is high and the distributing field is wide, the 50 percent population and 70 percent properties distribute at the threaten field of flood disaster in China. Flood disaster has caused a huge amount of economical losses and these losses have an increasing trend. Along with the development of reducing natural disaster action, it has become one of the most attentive problems for monitoring flood, preventing flood and forecasting flood efficiently. Remote sensing has the characteristics of large spatial observing areas, wide spectrum ranges, and imaging far away from the targets, imaging capabilities all weather. Spatial remote sensing information, which records the full, processes of the disaster's occurrence and development in real-time. It is a scientific basis for management, planning and decision-making. Through systemic analyzing the RS monitoring theory, based on compounding RS information, the technology and method of monitoring flood disaster are studied.

  • PDF