Browse > Article
http://dx.doi.org/10.3807/JOSK.2014.18.2.146

Two-step Holographic Imaging Method based on Single-pixel Compressive Imaging  

Li, Jun (School of Physics and Telecommunication Engineering, South China Normal University)
Li, Yaqing (School of Physics and Telecommunication Engineering, South China Normal University)
Wang, Yuping (School of Physics and Telecommunication Engineering, South China Normal University)
Li, Ke (School of Physics and Telecommunication Engineering, South China Normal University)
Li, Rong (School of Physics and Telecommunication Engineering, South China Normal University)
Li, Jiaosheng (School of Physics and Telecommunication Engineering, South China Normal University)
Pan, Yangyang (School of Physics and Telecommunication Engineering, South China Normal University)
Publication Information
Journal of the Optical Society of Korea / v.18, no.2, 2014 , pp. 146-150 More about this Journal
Abstract
We propose an experimental holographic imaging scheme combining compressive sensing (CS) theory with digital holography in phase-shifting conditions. We use the Mach-Zehnder interferometer for hologram formation, and apply the compressive sensing (CS) approach to the holography acquisition process. Through projecting the hologram pattern into a digital micro-mirror device (DMD), finally we will acquire the compressive sensing measurements using a photodiode. After receiving the data of two holograms via conventional communication channel, we reconstruct the original object using certain signal recovery algorithms of CS theory and hologram reconstruction techniques, which demonstrated the feasibility of the proposed method.
Keywords
Holography; Two-step-only; Compressive sensing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. H. Seo, H. J. Choi, J. S. Yoo, G. S. Lee, C. H. Kim, S. H. Lee, and D. W. Kim, "Digitalhologram compression technique by eliminating spatial correlations based on MCTF," Opt. Commun. 283, 4261-4270 (2010).   DOI   ScienceOn
2 E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory 52, 489- 509 (2006).   DOI   ScienceOn
3 D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory 52, 1289-1306 (2006).   DOI   ScienceOn
4 Y. Rivenson, A. Stern, and B. Javidi, "Compressive Fresnel holography," Journal of Display Technology 6, 506-509 (2010).   DOI   ScienceOn
5 M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, "Single-pixel imaging via compressive sampling," IEEE Signal Process. Mag. 25, 83-91 (2008).   DOI   ScienceOn
6 D. Takhar, J. N. Laska, M. B. Wakin, M. E. Duarte, D. Baron, S. Sarvotham, K. E. Kelly, and R. G. Baraniuk, "A new compressive imaging camera architecture using opticaldomain compression," in Computational Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak, eds. (2006), art. no. 606509.
7 D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, "Compressive holography," Opt. Express 17, 13040- 13049 (2009).   DOI
8 M. Marim, E. Angelini, J. C. Olivo-Marin, and M. Atlan, "Off-axis compressed holographic microscopy in low-light conditions," Opt. Lett. 36, 79-81 (2011).   DOI   ScienceOn
9 Y. Rivenson, A. Rot, S. Balber, A. Stern, and J. Rosen, "Recovery of partially occluded objects by applying compressive Fresnel holography," Opt. Lett. 37, 1757-1759 (2012).   DOI   ScienceOn
10 N. T. Shaked, B. Katz, and J. Rosen, "Review of threedimentional holographic imaging by multiple-viewpointprojection based methods," Appl. Opt. 48, H120-H136 (2009).   DOI
11 Y. Rivenson, A. Stern, and J. Rosen, "Compressive multiple view projection incoherent holography," Opt. Express 19, 6109-6118 (2011).   DOI
12 S. Lim, D. Marks, and D. Brady, "Sampling and processing for compressive holography," Appl. Opt. 50, H75-H86 (2011).   DOI
13 J. Li, Y. Wang, R. Li, and Y. Li, "Coherent single-detector 3D imaging system," Proc. SPIE 8913, 891303 (2013).
14 T. J. Naughton and B. Javidi, "Compression of encrypted three-dimensional objects using digital holography," Opt. Eng 43, 2233-2238 (2004).   DOI   ScienceOn
15 E. Darakis and J. J. Soraghan, "Use of fresnelets for phase-shifting digital hologram compression," IEEE Trans. Image Process 15, 3804-3811 (2006).   DOI   ScienceOn
16 J. Li, Y. Wang, R. Li, and Y. Li, "Single-pixel holographic 3D imaging system based on compressive sensing," Digital Holography and 3D Imaging Technical Digest ${\copyright}$, OSA, 2013, DW2A.9.
17 P. Clemente, V. Duran, E. Tajahuerce, E. Andres, V. Climent, and J. Lancis, "Compressive holography with a single-pixel detector," Opt. Lett. 38, 2524-2527 (2013).   DOI
18 X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, "Two-step phase-shifting interferometry and its application in image encryption," Opt. Lett. 31, 1414-1416 (2006).   DOI   ScienceOn
19 J.-P. Liu and T.-C. Poon, "Two-step-only quadrature phaseshifting digital holography," Opt. Lett. 34, 250-252 (2009).   DOI   ScienceOn
20 E. J. Candes and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag. 25, 21-30 (2008).   DOI   ScienceOn
21 A. E. Shortt, T. J. Naughton, and B. Javidi, "Histogram approaches for lossy compression of digital holograms of three-dimensional objects," IEEE Trans. Image Process 16, 1548-1556 (2007).   DOI   ScienceOn
22 J. Li, T. Zheng, Q.-Z. Liu, and R. Li, "Double-image encryption on joint transform correlator using two-step-only quadrature phase-shifting digital holography," Opt. Commun. 285, 1704-1709 (2012).   DOI   ScienceOn
23 R. Horisaki, J. Tanida, A. Stern, and B. Javidi, "Multidimensional imaging using compressive Fresnel holography," Opt. Lett. 37, 2013-2015 (2012).   DOI