• Title/Summary/Keyword: digital mathematical model

Search Result 125, Processing Time 0.033 seconds

GeoMaTree : Geometric and Mathematical Model Based Digital Tree Authoring System

  • Jung, Seowon;Kim, Daeyeoul;Kim, Jinmo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3284-3306
    • /
    • 2018
  • This study proposes a method to develop an authoring system(GeoMaTree) for diverse trees that constitute a virtual landscape. The GeoMaTree system enables the simple, intuitive production of an efficient structure, and supports real-time processing. The core of the proposed system is a procedural modeling based on a mathematical model and an application that supports digital content creation on diverse platforms. The procedural modeling allows users to control the complex pattern of branch propagation through an intuitive process. The application is a multi-resolution 3D model that supports appropriate optimization for a tree structure. The application and a compatible function, with commercial tools for supporting the creation of realistic synthetic images and virtual landscapes, are implemented, and the proposed system is applied to a variety of 3D image content.

Dynamic File Migration And Mathematical model in Distributed Computer Systems (분산 시스템에서 동적 파일 이전과 수학적 모델)

  • Moon, Won Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.35-40
    • /
    • 2014
  • Many researches have been conducted to achieve improvement in distributed system that connects multiple computer systems via communication lines. Among others, the load balancing and file migration are considered to have significant impact on the performance of distributed system. The dynamic file migration algorithm common in distributed processing system involved complex calculations of decision function necessary for file migration and required migration of control messages for the performance of decision function. However, the performance of this decision function puts significant computational strain on computer. As one single network is shared by all computers, more computers connected to network means migration of more control messages from file migration, causing the network to trigger bottleneck in distributed processing system. Therefore, it has become imperative to carry out the research that aims to reduce the number of control messages that will be migrated. In this study, the learning automata was used for file migration which would requires only the file reference-related information to determine whether file migration has been made or determine the time and site of file migration, depending on the file conditions, thus reflecting the status of current system well and eliminating the message transfer and additional calculation overhead for file migration. Moreover, mathematical model for file migration was described in order to verify the proposed model. The results from mathematical model and simulation model suggest that the proposed model is well-suited to the distributed system.

Deriviation of the z-transfer Function of Optimal Digital Controller Using an Integral-Square-Error Criterion with the continuous-data Model in Linear Control Systems (선형연속데이터형 제어계통의 플랜트와 디지털모델의 오차자승적분지표에 의한 최적디지탈제어기의 전달함수유도)

  • Park, Kyung-Sam
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.6
    • /
    • pp.211-218
    • /
    • 1983
  • In this paper, an attempt is made to match the continuous state trajectory of the digital control system with that of its continuous data model. Matching the state trajectories instead of the output responses assures that the performances of the internal variables of the plant as well as the output variables are preserved in the discretization. The mathematical tool used in this research is an extended maximum principle of the Pontryagin type, which enables one to synthesize a staircase type of optimal control signals, such as the output signal of a zero-order hold asociated with a digital controller. A general mathematical expression of the digital controller which may be used to replace the analog controller of a general system while preserving as mauch as possible the performance characteristics of the original continuous-data control system is derived in this paper.

  • PDF

Chaotic Phenomena in Addiction Model for Digital Leisure

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.291-297
    • /
    • 2013
  • Chaotic dynamics have been studied by many researchers in the fields of biology, physics, and engineering. Interest in chaos is also expanding to the social sciences such as politics, economics, and others, including the prediction of societal events. The concept of leisure has developed from a passive concept correlated with relaxation, entertainment, and ideology formation into a positive concept that assumes a more active role. As information and communications technology develops, digital leisure activity is expected to continue spreading. This expansion of digital leisure function correctly, as well as. Traditional leisure activity functions correctly more, whereas digital leisure activity is predicted to function incorrectly more often. In this paper, we propose a mathematical addiction model of digital leisure that deals with its dysfunctions such as addiction to digital leisure, including computer games, internet search, internet chatting, and social media. Herein, to solve addiction to digital leisure, we propose a model derived from a nicotine addiction.

Mathematical modeling study for the stagnation pressure control system of the blow-down type wind tunnel (불어내기식 풍동의 정체실 압력제어 시스템 모델링)

  • 김영준;권정태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.206-211
    • /
    • 1992
  • A mathematical model of the blow-down type wind tunnel is developed in order to design the controller which controls the stagnation pressure being used to obtain the setpoint Mach Number. The motion of compressible fluids in the tunnel is modeled using the one-dimensional gasdynamics. The time responses of the wind tunnel states, such as pressures, mass flow rates, and valve open area, are investigated by digital computer simulation. By the simulation study it is shown that the real blow-down wind tunnel can be simulated by the obtained mathematical model.

  • PDF

PRICING OF TIMER DIGITAL POWER OPTIONS BASED ON STOCHSTIC VOLATILITY

  • Mijin Ha;Sangmin Park;Donghyun Kim;Ji-Hun Yoon
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.63-74
    • /
    • 2024
  • Timer options are financial instruments proposed by Société Générale Corporate and Investment Banking in 2007. Unlike vanilla options, where the expiry date is fixed, the expiry date of timer options is determined by the investor's choice, which is in linked to a variance budget. In this study, we derive a pricing formula for hybrid options that combine timer options, digital options, and power options, considering an environment where volatility of an underlying asset follows a fast-mean-reverting process. Additionally, we aim to validate the pricing accuracy of these analytical formulas by comparing them with the results obtained from Monte Carlo simulations. Finally, we conduct numerical studies on these options to analyze the impact of stochastic volatility on option's price with respect to various model parameters.

Mathematical Model for File Migration and Load Balancing in Distributed Systemsc (분산 시스템에서 파일 이전과 부하 균등을 위한 수학적 모델)

  • Moon, Wonsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.153-162
    • /
    • 2017
  • Advances in communication technologies and the decreasing cost of computers have made distributed computer systems an attractive alternative for satisfying the information needs of large organizations. This paper presents a distributed algorithm for performance improvement through load balancing and file migration in distributed systems. We employed a sender initiated strategy for task migration and used learning automata with several internal states for file migration. A task can be migrated according to the load information of a computer. A file is migrated to the destination processor when it is in the right boundary state. We also described an analytical model for load balancing with file migration to verify the proposed algorithm. Analytical and simulation results show that our algorithm is very well-suited for distributed system environments.

Linear Algebra Teaching in the Digital Age (디지털 시대의 대학수학교육: 선형대수학을 중심으로)

  • Lee, Sang-Gu;Lee, Jae Hwa;Park, Kyung-Eun
    • Communications of Mathematical Education
    • /
    • v.31 no.4
    • /
    • pp.367-387
    • /
    • 2017
  • The educational environment in the digital age of the 21st century definitely affects teaching and learning methods to be changed. In addition, the perceptions and methods of mathematics education in the digital age have also been changing. This study proposes a university mathematics education model suitable for the digital age, which makes full use of the internet/digital environment and leads the students to participate in the learning processes. We apply the proposed model to Linear Algebra course, and present a concrete method of teaching and learning model including evaluation. This will be the first study on how to organize and operate digital courses in Korea in accordance with the mathematics education in the digital era which is rapidly spreading around the world.

Mathematical Modeling of the Tennis Serve: Adaptive Tasks from Middle and High School to College

  • Thomas Bardy;Rene Fehlmann
    • Research in Mathematical Education
    • /
    • v.26 no.3
    • /
    • pp.167-202
    • /
    • 2023
  • A central problem of mathematics teaching worldwide is probably the insufficient adaptive handling of tasks-especially in computational practice phases and modeling tasks. All students in a classroom must often work on the same tasks. In the process, the high-achieving students are often underchallenged, and the low-achieving ones are overchallenged. This publication uses different modeling of the tennis serve as an example to show a possible solution to the problem and develops and discusses one adaptive task each for middle school, high school, and college using three mathematical models of the tennis serve each time. From model to model within the task, the complexity of the modeling increases, the mathematical or physical demands on the students increase, and the new modeling leads to more realistic results. The proposed models offer the possibility to address heterogeneous learning groups by their arrangement in the surface structure of the so-called parallel adaptive task and to stimulate adaptive mathematics teaching on the instructional topic of mathematical modeling. Models A through C are suitable for middle school instruction, models C through E for high school, and models E through G for college. The models are classified in the specific modeling cycle and its extension by a digital tool model, and individual modeling steps are explained. The advantages of the presented models regarding teaching and learning mathematical modeling are elaborated. In addition, we report our first teaching experiences with the developed parallel adaptive tasks.

Development of Digital Leaf Authoring Tool for Virtual Landscape Production (가상 조경 생성을위한 디지털 잎 저작도구 개발)

  • Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • This study proposes a method of developing authoring tool that can easily and intuitively generate diverse digital leaves that compose virtual landscape. The main system of the proposed authoring tool consists of deformation method for the contour of leaf blade based on image warping, procedural modeling of leaf vein and visualization method based on mathematical model that expresses the color and brightness of leaves. First, the proposed authoring tool receives leaf input image and searches for contour information on the leaf blades. It then designs leaf blade deformation method that can generate diverse shapes of leaf blades in an intuitive structure using feature-based image warping. Based on the computed leaf blade contour, the system implements the generalized procedural modeling method suitable for the authoring tool that generates natural vein patterns appropriate for the leaf blade shape. Finally, the system applies visualization function that can express color and brightness of leaves and their changes over time using a mathematical model based on convolution sums of divisor functions. This paper provides texture support function so that the digital leaves that were generated using the proposed authoring tool can be used in a variety of three-dimensional digital contents field.