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Abstract. Timer options are financial instruments proposed by Société

Générale Corporate and Investment Banking in 2007. Unlike vanilla op-

tions, where the expiry date is fixed, the expiry date of timer options is
determined by the investor’s choice, which is in linked to a variance bud-

get. In this study, we derive a pricing formula for hybrid options that

combine timer options, digital options, and power options, considering an
environment where volatility of an underlying asset follows a fast-mean-

reverting process. Additionally, we aim to validate the pricing accuracy

of these analytical formulas by comparing them with the results obtained
from Monte Carlo simulations. Finally, we conduct numerical studies on

these options to analyze the impact of stochastic volatility on option’s
price with respect to various model parameters.

1. Introduction

Since financial markets have been growing and improving, not only a lot of
investors but also market participants have become more interested in gener-
ating higher returns, but there have been growing concern over possible risk
of the unpredictable market, which springs from the global financial crisis,
the COVID–19 pandemic or the Russia–Ukraine conflict. It allows many re-
searchers to give attention to the financial modelling to predict the prices of
diverse derivatives in the real market. For example, geometric Brownian mo-
tion (GBM) governed by the model dynamics of the risky asset price has been
introduced by Black-Scholes [4]. In addition, in order to capture and reflect the
empirical results seen in the financial market, stochastic volatility(SV) models
have been proposed by Hull and White [10], Heston [9], Fouque et al. [7]. SV
model has been considered to be very helpful for derivative pricing for several
years, because it has shown the existence of nonflat implied volatility, demon-
strating that they make up for the disadvantage of Black-Scholes model and
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reflecting the empirical evidences that the implied volatility of equity options
exhibits a smile or skew phenomenon. Nevertheless, the level of implied volatil-
ity can grow higher than the realized volatility due to the risk premium from
price uncertainty of the risky asset. The high implied volatility implies that the
option is overestimated.

Since then, there have been lots of researches that dealt with the volatility risk
for the derivative pricing. In particular, timer option, one of innovative financial
securities has been first launched by Société Générale Corporate and Investment
Banking (SG CIB) in April 2007, which have a random expiration depending on
the realized accumulated variance under the variance budget. A timer option
enables investors to take into the volatility level consideration to exercise their
options with a random maturity contrary to a standard European vanilla option
that can exercise only in the fixed maturity. According to Sawyer [19], timer
option is helpful for investors to seek more underestimated derivatives compared
to vanilla options. If the volatility is high, the timer options are exercised at an
early stage. On the other hand, it takes much time for the timer options to arrive
at its maturity in case that the volatility is low. Under these circumstances, if
the price of derivatives changes drastically in the uncertain market, described by
the global financial crisis in 2007-2008, then it can directly lead to the dramatic
changes of the volatility, which ultimately makes the option get exercised fast.
As shown in Bernard and Cui [3], timer options have a significant role in hedging
or implementing replication techniques for the variance swap or the volatility
swaps. There have been many studies about the valuation for timer options.
For instance, Bernard and Cui [3] first dealt with the timer options based on
the stochastic volatility, verifying the analytic solutions for the options can be
obtained by an efficient almost exact Monte Carlo method. Zheng and Zeng
[26] examined the pricing formula for the timer options based on the 3/2 model
by making use of a closed-form partial transform. Furthermore, Li [15] used
the joint probability density function for the first-passage time that the realized
variance hit the variance budget at the first time to derive the analytic pricing
formula of the timer options with the Heston model.

Digital opiton is a type of trading option in which the investors consider a
fixed strike price for a security. The option gains a profit if the asset’s market
price goes beyond the strike price prior to the maturity time. This trading
option allows traders to give investors a fixed payment by accurately forecasting
the prices of derivatives. Whereas binary options may be used in theoretical
asset pricing, they are vulnerable to fraud in their applications and therefore,
prohibited by regulators in lots of jurisdictions as a form of gambling [20]. The
outlets of a lot of binary options have been revealed as fraudulent [21]. The
U.S. FBI has been scrutinizing closely binary option scams all over the world,
and the Israeli police have tied the industry to criminal syndicates [22], [23], [2].
The European Securities and Markets Authority (ESMA) have proscribed retail
binary options trading [18]. Australian Securities & Investments Commission
(ASIC) takes account of binary options as a ”high-risk” and ”unpredictable”
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investment option [11], and finally also prohibited binary options sale to retail
investors in 2021 (cf. [1]).

Power options are one of the options that the payoff function of the underlying
asset relies on an index of a positive integer with respect to the asset price at
the maturity. Zhang et al. [25] found that the type of option can offer the
flexibility and a greater amount of leverage to investors unlike the standard
European vanilla options. As shown in Macovschi [16], the author dealt with
the power options based on the Heston stochastic volatility model and a pure
jump Levy model. Kim et al. [13] investigated the semi-analytic pricing formula
of the power options with the Heston model, implementing numerical methods
for the value of power put options and capped power call options. Zhang et al.
[25] derived the price of the power options, assuming that, for Liu’s uncertain
stock model, the option value for the underlying stock price solves an uncertain
differential equation compared with to the Black-Scholes framwork, and derive
the analytic formulas for the power options through the approach of uncertain
calculus under uncertainty theory.

In this article, integrating the index in terms of the underlying asset of the
standard digital power options into the timer options, we investigate timer-
digital power options (TDPOs) under the SV.

SV models have widely been used in the pricing problems of the diverse op-
tions, supplementing somes weaknesses of the existing Black-Scholes model that
the SV models capture and reflect the empirical evidence in the real market ver-
ifying demonstrating that the implied volatility of equity options exhibits smile
and skew phenmenon at the same time. In fact, as seen in Choi et al. [6], the
assumption of constant volatility fails to capture an extraordinary stochastic
phenomenon since the global crisis in 2007-2008. Therefore, the empirical stud-
ies that the volatility of the underlying asset price is a stochastic process have
become enable for us to show the market dynamics more effectively and accu-
rately. Fouque et al. [7] has taken into the several types of options consideration
based upon the SV model incorporated by a fast mean-reverting process. From
then on, many researches for the financial derivatives with the SV model have
been conducted by Wong and Chan [24], Chiarella et al. [5], Kim et al. [14].
Especially, Kim et al. [14] utilized the SV model to external barrier options and
then derive the analytic pricing formula by making use of the technique of the
asymptotic analysis.

In this paper, we have the main contributions of this paper as follows: First of
all, we set up the model dynamics for the timer-digital power options (TDPOs)
and obtain the partial differential equations (PDEs) for the price of TDPOs.
Second, we derive the approximated formulas for the PDEs by taking advan-
tage of the method of asymptotic analysis, which is very significant one for us
to handle the TDPO prices. Third, we demonstrate the accuracy of the cor-
rected option price by using the Monte-Carlo method. Finally, we carry out
the numerical experiments of the value of TDPOs and observe some economical
meanings with respect to model parameters.
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The rest of this paper is organized as follows. In Section 2, we construct
the dynamics for the market model of the TDPOs and obtain the PDEs for
the price of TDPOs. Section 3 deals with the first-order approximation for
the value of the TDPOs by utilizing the asymptotic analysis. In section 4,
we demonstrate the pricing accuracy of the our solutions for the TDPOs from
Monte-Carlo simulation and also provide the numerical implications in terms of
model parameters. Section 5 presents the concluding remarks.

2. Model formulation

In this section, we construct the stochastic dynamics for the underlying asset
price and we deduce the PDEs by using the well-known Feynman-Kac formula,
described in Øksendal [17]. First of all, let us consider the probability space
(Ω,F ,P) where Ω is a nonempty set, F is a σ-algebra over Ω, and P is a
probability measure on the measurable space (Ω,F). In this probability space,
the underlying asset price, denoted by Xt, follows

dXt = µXtdt+ f(Yt)XtdW
1
t ,

dYt = α(m− Yt)dt+ βdW 2
t ,

(1)

where µ is constant mean return rate of X, f is any bounded smooth function,
α, β are positive constants, m is the long-run mean level of Y , and {W 1

t , t ≥ 0}
and {W 2

t , t ≥ 0} are standard Brownian motions satisfying d
〈
W 1,W 2

〉
t
= ρdt

and |ρ| ≤ 1.
The fast mean-reverting Ornstein-Uhlenbeck process, denoted as Yt, can be

explicitly described through the equation Yt = m+(Y0−m)e−αt+β
∫ t

0
e−α(t−s)dW 2

t .

This leads to the distribution of Yt being N (m+ (Y0 −m)e−αt, β2

2α (1− e−2αt)).
In addition, as t goes to ∞, Yt converges to its invariant distribution, which

is N (m,u2), where u2 = β2

2α . The term ”mean-reverting” refers to the typical
time it takes for a process to revert back to its mean level, characterized by the
invariant distribution of Yt. In (1), α is referred to as the mean-reverting rate.
When α is sufficiently large, the procee Yt in (1) tends to revert to its long-run
mean m regardless of the time. Therefore, we introduce a small parameter ϵ,
defined as the inverse of the mean-reversion rate.

Utilizing the Girsanov theorem presented in Øksendal [17], under the risk-

neutral measure P̂, the model dynamics (1) is transformed into

dXt = rXtdt+ f(Yt)XtdŴ
1
t ,

dYt =

(
1

ϵ
(m− Yt)−

u
√
2√
ϵ
Λ(Yt)

)
dt+

u
√
2√
ϵ
dŴ 2

t ,
(2)

where r is a risk free interest rate and the transformed Brownian motions Ŵ 1
t

and Ŵ 2
t are correlated with ρ.

The maturity of a timer option τ is determined based on the variance budget
V determined by the investor. To be more precise, the random maturity τ is
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identified as the initial moment when the cumulative realized variance aligns
with the predetermined variance budget V for the first time. In other words,

τ := inf {t(> 0) : Vt = V} ,(3)

where Vt is the accumulated process defined by Vt :=
∫ t

0
f2(Ys)ds.

In this paper, to deal with the TDPOs, we propose a payoff function for the
TDPO, denoted as h(Xτ ), is described by

h(Xτ ) = H(Xc
τ −K),(4)

where c is a nonnegative integer, K is a stirke price andH is a Heviside function.
Then, at time t ∧ τ , this option price is expressed by

P (t ∧ τ, x, y, v) = Ê
[
e−r(τ−t∧τ)h(Xτ ) | Xt∧τ = x, Yt∧τ = y, Vt∧τ = v

]
,(5)

where Ê[·] denotes expectation under the risk-neutral measure P̂. According to
Li [15], the timer option’s price at any time t ∧ τ is the same as the option’s
price at the initial time. In other words, P (t ∧ τ, x, y, v) can be expressed by

P (t ∧ τ, x, y, v) = Ê
[
e−rτV−vh(Xτ ) | X0 = x, Y0 = y

]
.(6)

Now, by applying the Feynman-Kac formula and the fact that timer option
does not depend on time t referring to Ha et al. [8], we obtain the partial
differential equation (PDE) as follows:

LϵP (x, y, v) = 0, v < V,
P (x, y,V) = H(Xc

τ −K),
(7)

where the differential operator Lϵ is given by

Lϵ :=
1

ϵ
L0 +

1√
ϵ
L1 + L2,

L0 := (m− y)
∂

∂y
+ u2 ∂2

∂y2
,

L1 := −u
√
2Λ(y)

∂

∂y
+ u

√
2ρf(y)x

∂2

∂x∂y
,

L2 := r

(
x
∂

∂x
− ·
)
+ f2(y)

∂

∂v
+

1

2
f2(y)x2 ∂2

∂x2
.

(8)

Referring to Fouque et al. [7], if we expand P in powers of
√
ϵ, then we have

P (x, y, v) = P0(x, y, v) +
√
ϵP1(x, y, v) + ϵP2(x, y, v) + ϵ

√
ϵP3(x, y, v) + · · · ,

(9)

where P0(x, y,V) = H(Xc
τ −K) and Pi(x, y,V) = 0 if i ≥ 1. In (9), we focus on

the first two terms: P0, leading-order price, and P1, correction term. Next, the
following theorem provides that the first two terms P0 and P1 do not depend
on the volatility y, and it also presents a homogeneous PDE for P0 and a non-
homogeneous PDE for P1.
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Theorem 2.1. If P0 and P1 do not grow as much as ∂P0

∂y ∼ e
y2

2 and ∂P1

∂y ∼

e
y2

2 as y → ∞, then P0(x, y, v) and P1(x, y, v) are independent of y. Then,
the leading-order price P0 and correction term P1 satisfy the following PDE
problems

⟨L2⟩(σ)P0(x, v) = 0, v < V,
P0(x,V) = H(Xc

τ −K),
(10)

and

⟨L2⟩(σ)P1(x, v) = AP0, v < V,
P1(x,V) = 0,

(11)

respectively, where

⟨L2⟩(σ) := r

(
x
∂

∂x
− ·
)
+ σ2 ∂

∂v
+

σ2

2
x2 ∂2

∂x2
,(12)

σ :=
√

⟨f2(y)⟩,(13)

A := u
√
2 ⟨Λ(y)ϕ′(y)⟩

(
∂

∂v
+

x2

2

∂2

∂x2

)
−u

√
2ρ ⟨f(y)ϕ′(y)⟩

(
x

∂2

∂x∂v
+ x2 ∂2

∂x2
+

x3

2

∂3

∂x3

)
,

(14)

ϕ(y) is a solution to the Poisson equation L0ϕ(y) = f2(y) − ⟨f2(y)⟩, and σ in
(13) is defined as the effective volatility.

Proof. Substituting (9) into (7), we get the following equation for
√
ϵ.

1

ϵ
L0P0 +

1√
ϵ
(L0P1 + L1P0) + (L0P2 + L1P1 + L2P0)

+
√
ϵ (L0P3 + L1P2 + L2P1) · · · = 0.

Since ϵ(> 0) is arbitrary, the coefficients of each term should all be zero. In
other words, the following equations is satisfied:

L0P0 = 0, L0P1 + L1P0 = 0, L0P2 + L1P1 + L2P0 = 0,

L0P3 + L1P2 + L2P1 = 0, · · · .

From these equations, we obtain that P0 and P1 are independent of y based on
the growth condition and hold the two PDEs (10) and (11) for P0 and P1. □

Lemma 2.2. In (10), the leading order term P0(x, v) is given by

P0(x, v) = e−r( V−v

σ2 )N (d),(15)

where N (·) = 1
2π

∫ ·
−∞ e−z2/2dz and d =

log
(
x/K

1
c

)
+
(
r−σ2

2

)
( V−v

σ2 )
√
V−v

.
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Proof. To obtain the solution to the PDE (10), let us consider the following
change of variables:

ξ =
V− v

σ2
, z = log

( x

K

)
, ν =

P0

K
, ω = e−(αz+βξ)ν,

α = −k − 1

2
, β = −σ2(k + 1)2

8
, and k =

2r

σ2
.

(16)

Then, the PDE (10) is transformed into the following heat equation

∂ω

∂ξ
=

σ2

2

∂2ω

∂z2
, 0 < ξ <

V
σ2

,

ω(0, z) = e−αzK−1, z >
1− c

c
log(K).

Referring to Kevorkian [12], ω is given by

ω(z, ξ) =

∫ ∞

1−c
c logK

1√
2πξ⟨f2⟩

e
− (s−z)2

2ξ⟨f2⟩ ω(s, 0)ds.

Now, utilizing the change of variables in (16), ω can be derived as follows:

ω(z, ξ) = K−1 exp

(
ξσ2(k − 1)2

8
+

k − 1

2
z

)
N

− 1−c
c log(K) + z +

(
r − σ2

2

)
ξ

σ
√
ξ

 .

(17)

Finally, subtituting (17) into (16), we have

P0 = e−r( V−v

σ2 )N

 log
(
x/K

1
c

)
+
(
r − σ2

2

) (V−v
σ2

)
√
V− v

 .

□

Lemma 2.3. In (11), the correction term P ϵ
1 (x, v) =

√
ϵP1(x, v) is given by

P ϵ
1 (x, v) = −

√
ϵ

(
V− v

σ2

)
AP0.(18)

Proof. By the commuting property as in Fouque et al. [7], we have the following
relation:

⟨L2⟩
(
xn ∂

nP0

∂xn

)
= xn ∂n

∂xn
⟨L2⟩P0.

Therefore, we can obtain the following result:

⟨L2⟩
(
−V− v

⟨f2⟩
AP0

)
= AP0 −

V− v

⟨f2⟩
⟨L2⟩ (AP0) = AP0,

where A is presented in (14). □
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Finally, by incorporating the results of the leading-order price, P0 in (15) and
the correction term, P ϵ

1 in (18), we obtain the following approximated pricing

formula of TDPO, denoted as P̃ ϵ.

P (x, y, v) ≈ P̃ ϵ(x, v) ≡ P0(x, v) + P ϵ
1 (x, v).(19)

Then, referring to Fouque et al. [7], if the payoff function, h, is continuously

differentiable, then the error between P solution to PDE (7) and P̃ ϵ in (19) can
be described by ∣∣∣P (x, y, v)− P̃ ϵ(x, v)

∣∣∣ ≤ O(ϵ)(20)

holds for 0 < ϵ ≪ 1. In this research, we numerically provide the accuracy of
the approxiated solution in (19) utilizing the Monte Carlo simulations instead
of deriving the mathematical proof (see Table 1 in Section 3).

3. Implications

In this section, we provide the accuracy of pricing formula of the TDPO de-
scribed in (17) by comparing it with the generated results from the Monte
Carlo simulations, instead of the driving the mathematical proof for the error
estimate of the formula for TDPO. For these numerical experiments, we se-
lected the model parameters as follows: v = 0.01, r = 0.01,V = 0.0265, ρ =
−0.1, ⟨Λϕ′⟩ = 0.2, ⟨fϕ′⟩ = 0.01, u = 0.1,K = 0.7, and σ = 0.1, referring to Ha
et al. [8]. In addition, all these computations are implemented using an Apple
M2 Pro and 16 GB memory.

ϵ P̃ ϵ(x, v) PMC |P̃ ϵ(x, v)− PMC| RE [%]
0.100 0.927268 0.927268 0.016289 1.756646
0.050 0.911179 0.926778 0.015598 1.683087
0.010 0.911447 0.923837 0.012391 1.341216
0.005 0.911510 0.921877 0.010367 1.124547
0.001 0.911594 0.917466 0.005872 0.639973

Table 1. Error comparison between price of timer-digital
power option P (x, y, v) and Monte–Carlo price PMC with re-
spect to ϵ. Referring to Ha et al. [8], we selected baseline pa-
rameters as follows: x = 1, v = 0.01, r = 0.01,V = 0.0265, ρ =
−0.1, ⟨Λϕ′⟩ = 0.2, ⟨fϕ′⟩ = 0.01, u = 0.1,K = 0.7, and σ = 0.1.
All the computations for Table 1 are implemented using a sys-
tem with Apple M2 Pro and 16 GB memory.

We conduct a validation of our approximated solution presented in (19) via
Monte Carlo simulations, which are considered as true or benchmark solution
of TDPO given in (5). As observed In Table 1, it can be seen that the price
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discrepancy between the approximated price P̃ ϵ(x, v) and the Monte Carlo price
PMC approaches zero sufficiently, which is evidenced by the data presented in
the forth column of Table 1). In addition, the relative error, defined by RE =
|P̃ ϵ(x,v)−PMC|

PMC
× 100, tends to zero as the parameter ϵ decreases, a trend that is

clearly illustrated in the fifth column of Table 1. Therefore, our approximated
pricing formula presented in (19) is derived accuratly and efficiently.

Figure 1 represents the behavior of the correction term, P1, in terms of the
underlying asset price or realized variance, with respect to model parameters:
x = 1, v = 0.01, r = 0.01,V = 0.0265, ρ = −0.1, ⟨Λϕ′⟩ = 0.2, ⟨fϕ′⟩ = 0.01, u =
0.1,K = 0.7, σ = 0.1 and ϵ = 0.001. First, in Figure 1(a), we examine the
impact of the power of the stock price on the correction term with respect
to the underlying asset price, x. In this figure, one can see that the correction
term, P ϵ

1 , have a hump phenomenon as x approaches K1/c, and if x greater than
K1/c, then the graph tends to decreases rapidly. It is worth noting that when
c = 1, TDPO reduces the standard timer-digital options. Second, in Figure
1(b), we analyze the influence of the power of the stock price on correction
term with respect to the realized variance level, v. In the case where c = 1,
the graph exhibits a monotonically increasing shape as v is closed to V, while
in the cases of c = 2 and c = 3, the graph displays convexity. Interestingly,
in this figure, it can be seen that the stochastic volatility is more significant as
the parameter c increases, especially when the realized variance v deviates from
the given variance budget V compared to when v ≈ V. Therefore, from both
figures, we can find out that the parameter c, the power of the stock price, and
the stochastic volatility play a key role in the price of TDPO.

4. Conclusion

In this study, we propose the timer-digital power options under a generalized
stochastic volatility model. Unlike conventional options with fixed expiration
dates, timer options offer investors the flexibility to choose their expiration date
based on a predefined variance budget. This research focuses on deriving a pric-
ing formula for timer-digital power options. In addition, we provide the pricing
accuracy of obtained analytical formulas by utilizing Monte Carlo simulations.
Furthermore, numerical investigations are conducted to investigate the impact
of the stochastic volatility on the option’s price with respect to the various
model parameters.
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