• Title/Summary/Keyword: diffusion resistance

Search Result 855, Processing Time 0.031 seconds

Study on Ohmic resistance of Zn-doping InP using RTA method (RTA 방법에 의해 Zn 도핑된 InP의 오믹저항 특성연구)

  • Kim, H.J.;Kim, I.S.;Kim, T.U.;Kim, S.T.;Kim, S.H;Ki, H.C.;Lee, K.M.;Yang, M.H.;Ko, H.J.;Kim, H.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.237-238
    • /
    • 2008
  • Electrical properties of Pd/Zn/Pd/Au contacts to p-InP were investigated as function of the V/III ratio of p-InP. P-type InP was made by the Zn diffusion into InP and activation process with rapid thermal annealing (RTA) measurement. After activation, the hole concentration was two orders of magnitude higher than that of the sample having only diffusion process. According to transmission line method (TLM) results, the specific contact resistance of p-InP was lower as used InP having the lower V/III ratio. The experimental results represent that the diffusion of Zn in undoped InP deeply related to the equilibrium between interstitials and substitutional Zn is established via indium interstitials.

  • PDF

Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance (기체확산층 압축률과 상대습도가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.68-74
    • /
    • 2021
  • Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 ㎠ unit cell. The contact resistance was reduced to 8, 30 mΩ·㎠ and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.

Diffusion of Ion in Hardened Cement Paste Containing Slag-Siliceous Powder (I) Diffusion of Cl- Ion (슬래그-규산질 미분말을 함유하는 시멘트 경화체중에서의 이온의 확산 (I) Cl-이온의 확산)

  • 민경소;김태현;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.282-288
    • /
    • 1987
  • Diffusion of Cl- ion in hardened cement paste with slag and siliceous powder such as silica fume and white carbon was investigated. The addition of admixtures reduces the content of Ca(OH)2, which is the main cause of pore formation by corrosive action of sea-water. The addition of admixtures makes the hardened cement paste dense, thereby restricting the diffusion of Cl- ion and improving the resistance to sea-water. Apparence diffusion coefficient of Cl- ion in hardened ordinary portland cement paste was 3.7${\times}$10-8$\textrm{cm}^2$/sec, while that for the hardened cement paste with the admixture was 1.2∼3.2${\times}$10-8$\textrm{cm}^2$/sec.

  • PDF

Evaluation of the Durability at RC Structure with Surface Finishing Materials using FEM Analysis. (FEM 해석을 통한 표면마감재 시공 RC 구조물의 내구성 평가)

  • Lee, Seong-Min;Lee, Han-Seoung;Kim, Dong-Seok;Lee, Woo-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.269-272
    • /
    • 2006
  • Chloride ion diffusion is the most important thing of occuring deterioration in RC structure. So it is important to decide the precise chloride ion diffusion coefficient in order to predict the durability life in RC structure. The purpose of this study is to analyze the established data, which are restricted by chloride diffusion coefficient, and to calculate chloride ion diffusion coefficient using RCPT test. To examine the prediction of the concrete structure durability by an FEM analysis and the chloride diffusion coefficient as a variable. Each surface finishing materials were effective on the increment of chloride penetration resistance, but showed a little different effect depending on the type of surface finishing material.

  • PDF

Study on Sol-Gel Prepared Phosphosilicate Glass-Ceramic For Low Temperature Phosphorus Diffusion into Silicon

  • Kim, Young-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.32-36
    • /
    • 2001
  • A new solid source for low temperature diffusion into silicon was developed. The source wafer consists of an “active” compound, which is sol-gel prepared phosphosilicate glass-ceramics containing 56% P$_2$O$\sub$5/, embedded in a skeletal foam-like, inert substrate. Phosphorus diffusion from the new solid sources at low temperatures (800-875$^{\circ}C$) produced reprodecible sheet resistances and shallow junctions. From a series of one hour doping runs, the life time of the phosphosilicate source was determined to be over 40 hours. The effective diffusion coefficient of phosphorus into silicon and the corresponding activation energy at 850$^{\circ}C$ were determined to be 7.5${\times}$10$\^$-15/ $\textrm{cm}^2$/sec and ∼3.9 eV, respectively.

  • PDF

Chloride Diffusion in Mortars - Effect of the Use of Limestone Sand Part II: Immersion Test

  • Akrout, Khaoula;Ltifi, Mounir;Ouezdou, Mongi Ben
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.109-112
    • /
    • 2010
  • Part I of this study was devoted to the electrical accelerated chloride diffusion in mortars. In this second part, natural chloride diffusion has been investigated for four types of mortars under exposure to a 0.5 mol/L NaCl solution for a period of up to 35 days. Two different types of sand were used for the production of test samples: siliceous sand (used as a reference) and limestone sand (used in this study). The effect of water to cement ratio and exposure time on the diffusion coefficients of mortars was also investigated. In this study, the total and free chloride content and penetration depth of mortar were measured after immersion, and Fick's second law of diffusion was fitted to the experimental data to determine the diffusion coefficient. Their results show that the use of crushed limestone sand in mortar had a positive effect on the chloride resistance. The apparent diffusion coefficient in all specimens was smaller than that in siliceous sand mortar. However, the chloride penetration of these mortars was increased as exposure time progressed.

A Study on Chloride Diffusion in Concrete Containing Lightweight Aggregate Using Crushed Stone-powder (폐석분을 활용한 경량골재 콘크리트의 염화물 확산에 관한 연구)

  • Lee, Dae-Hyuk;Jee, NamYong;Kim, Jae-Hun;Jeong, Yong;Shin, Jae-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.127-131
    • /
    • 2009
  • The purpose of this study is to provide fundamental data on chloride diffusion from lightweight aggregate concrete by utilizing crushed stone-powder. Accordingly, the study performed experiments using concrete aggregates of Crushed Aggregate (CG), Single-sized Lightweight Aggregate (SLG), Continuous Graded Lightweight Aggregate (CLG), and using water-binder ratio of 0.4, 0.5, 0.6, and using binder of FA and BFS. The chloride diffusion coefficient is calculated after experiment based on NT BUILD 492. Diffusion coefficient of SLG and CLG were little bit higher than CG Concrete, but the difference is meaningless. Also, chloride diffusion coefficient indicates that it is highly affected by water-binder ratio, and it decreases with the decrease in water-binder ratio. The admixture substitution indicates decrease only with water-binder ratio of 0.4 for FA15% case, but admixture substitution indicates decrease with all levels of ratio for FA10 + BFS20% which means more appropriate. According to the analysis result of chloride diffusion from lightweight aggregate concrete, crushed stone-powder utilized lightweight aggregate concrete indicates higher chloride diffusion coefficient than CG concrete, which is not a significant difference, and can improve resistance through water-binder ratio and admixture substitution.

  • PDF

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate (고분자 전해질 연료전지 금속분리판 316L 스테인리스강의 부식거동 및 기체확산층(GDL)과의 계면접촉저항 측정)

  • Oh, In-Hwan;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.129-136
    • /
    • 2010
  • The corrosion behaviors of 316L stainless steel were investigated in simulated anodic and cathodic environments for proton exchange membrane fuel cell (PEMFC) by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the stainless steel and gas diffusion layer(GDL) was also measured. The possibility of 316L was evaluated as a substitute material for the graphite bipolar plate of PEMFC. The value of ICR decreased with an increase in compaction stress(20 N/$cm^2$~220 N/$cm^2$) showing the higher values than the required value in PEMFC condition. Although 316L was spontaneously passivated in simulated cathodic environment, its passive state was unstable in simulated anodic environment. Potentiostatic and electrochemical impedance spectroscopy (EIS) measurement results showed that the corrosion resistance in cathodic condition was higher and more stable than that in anodic condition. Field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma(ICP) were used to analyze the surface morphology and the metal ion concentration in electrolytes.

Aerodynamic Resistance and Eddy Diffusivity above the Plug Stand under Artificial Light (인공광하에서 공정묘 개체군상의 공기역학적 저항 및 확산계수)

  • 김용현;고재풍수
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.152-159
    • /
    • 1996
  • Experiment was performed in a newly developed wind tunnel with light system to determine the aerodynamic resistance and eddy diffusivity above the plug stand under artificial light. Maximum air temperature appeared near the top of the plug stand under artificial light. Since Richardson number was ranged from -0.07 to +0.01, the atmosphere above the plug stand in wind tunnel was in an unstable or near- neutral stability state. The average aerodynamic resistance at rear region of plug stand was 25 % higher than that at middle region. Eddy diffusivity($K_{M}$) linearly increased with the increasing air current speed. $K_{M}$ at air current speed of 0.9 m.$s^{-1}$ was about two times as many as that at air current speed of 0.3 m.$s^{-1}$. And average $K_{M}$ at the rear region was 15% lower than that at the middle region. These results indicated that the diffusion of heat and mass along the direction of air current inside the plug stand was different. It might cause the lack of uniformity in the growth and quality of plug seedlings. The wind tunnel developed in this study would be useful to investigate the effects of air current speed on microclimates and the growth of plug seedlings under artificial light in a semi- closed ecosystem.

  • PDF