DOI QR코드

DOI QR Code

Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate

고분자 전해질 연료전지 금속분리판 316L 스테인리스강의 부식거동 및 기체확산층(GDL)과의 계면접촉저항 측정

  • Oh, In-Hwan (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, Jae-Bong (School of Advanced Materials Engineering, Kookmin University)
  • 오인환 (국민대학교 공과대학 신소재 공학부) ;
  • 이재봉 (국민대학교 공과대학 신소재 공학부)
  • Received : 2010.06.01
  • Accepted : 2010.06.28
  • Published : 2010.06.01

Abstract

The corrosion behaviors of 316L stainless steel were investigated in simulated anodic and cathodic environments for proton exchange membrane fuel cell (PEMFC) by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the stainless steel and gas diffusion layer(GDL) was also measured. The possibility of 316L was evaluated as a substitute material for the graphite bipolar plate of PEMFC. The value of ICR decreased with an increase in compaction stress(20 N/$cm^2$~220 N/$cm^2$) showing the higher values than the required value in PEMFC condition. Although 316L was spontaneously passivated in simulated cathodic environment, its passive state was unstable in simulated anodic environment. Potentiostatic and electrochemical impedance spectroscopy (EIS) measurement results showed that the corrosion resistance in cathodic condition was higher and more stable than that in anodic condition. Field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma(ICP) were used to analyze the surface morphology and the metal ion concentration in electrolytes.

Keywords

References

  1. E. A. Cho and I. H. Oh, Polymer Sci. and Tech., 15, 5 (2004).
  2. A. Hermann, T. Chaudhuri and P. Spagnol, Int. J. Hydrogen Energy, 30, 359 (2005).
  3. J. H. Choi, M. H. Kim, and Y. J. Kim, J. Kor. Inst. Met. & Mater., 46, 817 (2008).
  4. D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, J. Power Sources, 86, 237 (2000). https://doi.org/10.1016/S0378-7753(99)00524-8
  5. H. Wang, M. A. Sweikart, and J. A. Turner, J. Powen Sources, 115, 243 (2003). https://doi.org/10.1016/S0378-7753(03)00023-5
  6. Y. Wang and Derek O. Northwood, J. Power Sources, 191, 483 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.029
  7. S. J. Lee, C. H. Iluang and Y. P. Chen, J. Mater. Tech., 140, 688 (2003). https://doi.org/10.1016/S0924-0136(03)00743-X
  8. Y. Wang and D. O. Northwood, J. Power Sources, 165, 293 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.034
  9. S. B. Lee, K. H. Cho, W. G. Lee, and H. Jang, J. Power Sources, 187, 318 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.064
  10. M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, and C. Cao, Corros. Sci., 46, 1369 (2004). https://doi.org/10.1016/S0010-938X(03)00187-2
  11. W. Y. Ho, H. J. Pan, C. L. Chang, D. Y. Wang, and J.J. Hwang, Surf. & Coat. Technol., 202, 1297 (2007). https://doi.org/10.1016/j.surfcoat.2007.07.056
  12. J. H. Kim, Y. H. Kim, J. S. Kim, and K. H. Jo, POSCO Research paper, 12, 36 (2007).
  13. R. Tian, J. Sun, and J. Wang, Int. J. Hydrogen Energy, 33, 7507 (2008). https://doi.org/10.1016/j.ijhydene.2008.09.080
  14. J. Andre, L. Antoni, J. P. Petit, E. D. Vito, and A. Montani, Int. J. Hydrogen Energy., 34, 3125 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.089