• Title/Summary/Keyword: diffusion layer

Search Result 1,411, Processing Time 0.032 seconds

Study on Adsorption Characteristics of Perfluorinated Compounds(PFCs) with Structural Properties (과불화화합물 구조적 속성에 따른 흡착 특성 연구)

  • Choi, HyoJung;Kim, Deok Hyun;Yoon, JongHyun;Kwon, JongBeom;Kim, Moonsu;Kim, Hyun-Koo;Shin, Sun-Kyoung;Park, Sunhwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.20-28
    • /
    • 2021
  • Perfluorinated compounds(PFCs), an emerging environmental pollutant, are environmentally persistent and bioaccumulative organic compounds that possess a toxic impact on human health and ecosystems. PFCs are distributed widely in environment media including groundwater, surface water, soil and sediment. PFCs in contaminated solid can potentially leach into groundwater. Therefore, understanding PFCs partitioning between the aqueous phase and solid phase is important for the determination of their fate and transport in the environment. In this study, the sorption equilibrium batch and kinetic experiment of PFCs were carried out to estimated the sorption coefficient(Kd) and the fraction between aqueous-solid phase partition, respectively. Sorption branches of the PFDA(Perfluoro-n-decanoic acid), PFNA(Perfluoro-n-nonanoic acid), PFOA(Perfluoro-n-octanoic acid), PFOS(Perfluoro-1-octane sulfonic acid) and PFHxS(Perfluoro-1-hexane sulfonic acid) isotherms were nearly linear, and the estimated Kd was as follow: PFDA(1.50) > PFOS(1.49) > PFNA(0.81) > PFHxS(0.45) > PFOA(0.39). The sorption kinetics of PFDA, PFNA, PFOA, PFOS and PFHxS onto soil were described by a biexponential adsorption model, suggesting that a fast transport into the surface layer of soil, followed by two-step diffusion transport into the internal water and/or organic matter of soil. Shorter times(<20hr) were required to achieve equilibrium and fraction for adsorption on solid(F1, F2) increased with perfluorinated carbon chain length and sulfonate compounds in this study. Overall, our results suggested that not only the perfluorocarbon chain length, but also the terminal functional groups are important contributors to electrostatic and hydrophobic interactions between PFCs and soils, and organic matter in soils significantly affects adsorption maximum capacity than kinetic rate.

Effect of composition on the structural and thermal properties of TiZrN thin film (TiZrN 박막의 조성이 구조적 특성 및 열적 특성에 미치는 영향)

  • Choi, Byoung Su;Um, Ji Hun;Seok, Min Jun;Lee, Byeong Woo;Kim, Jin Kon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2021
  • The effect of chemical composition on the structural and thermal properties of TiZrN thin films was studied. As the Zr fraction in the deposited TixZr1-xN (x = 0.87, 0.82, 0.7, 0.6, and 0.28) increased, microstructural changes consisted of reduction in the grain size and a gradual transition from columnar structure to granular structure were observed. In addition, it was also confirmed that a gradual crystal phase transition from TiN to TiZrN has occurred as the Zr fraction increased up to 0.4. After heat treatment at 900℃, Ti0.82Zr0.18N and Ti0.7Zr0.3N layers were converted to a form in which rutile phase TiO2 and TiZrO4 oxides coexist, while Ti0.6Zr0.4N layer was converted to TiZrO4 oxide. Among the five compositions of TiZrN films, the Ti0.6Zr0.4N showed the best high temperature stability and produced a significant enhancement in the thermal oxidation resistance of Inconel 617 through suppressing the surface diffusion of Cr caused by thermal oxidation of the Inconel 617 substrate.

Preparation and Characterization of Polysulfone Membranes Using PVP as an Additive (폴리비닐피롤리돈 첨가제를 이용한 폴리설폰막의 제조 및 특성 분석)

  • Lee, Jin Young;Lee, Kune Woo;Han, Myeong-Jin;Park, So-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.277-285
    • /
    • 2011
  • Polysulfone (PSf) membranes were prepared via the phase inversion process. Polyvinylpyrrolidone (PVP) was added as a nonsolvent additive in the casting solution containing a mixture of PSf and n-methylpyrrolidone. The added PVP played a role of enhancing liquid-liquid phase separation of the casting solution, and significantly reduced the solution fluidity. When prepared via the diffusion-induced process using water as a precipitation nonsolvent, the solidified membranes revealed a typical asymmetric structure irrespective of the addition of PVP. With 5 wt% PVP content, the finger-like cavities were more developed in the membrane sublayer compared to that of the membranes prepared without PVP. In contrast, with more than 10 wt% of PVP, the formation of finger-like cavities was suppressed, and the thickness of polymer nodule layer was increased. The surface porosity was also increased with the PSf content in the casting solution. The water permeability curve as a function of PVP addition revealed the inflection point. The maximum water permeability for 12 wt% PSf membrane was obtained with 5 wt% PVP content, and that for 18 wt% PSf membrane with 15 wt% PVP.

Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel (Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가)

  • Kim, Hong-Eun;Lee, Ki-Hyoung;Kim, Min-Chul;Lee, Ho-Jin;Kim, Keong-Ho;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

A Study on the Electrochemical Performance of Fe-V Chloric/Sulfuric Mixed Acid Redox Flow Battery Depending on Electrode Activation Temperature (Fe-V Chloric/Sulfuric Mixed Acid 레독스흐름전지 전극의 활성화 온도에 따른 전기화학적 성능 고찰)

  • Lee, Han Eol;Kim, Dae Eop;Kim, Cheol Joong;Kim, Taekeun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.639-645
    • /
    • 2020
  • Among the components of redox flow battery (RFB), the electrode serves as a diffusion layer of an electrolyte and a path for electrons and also is a major component that directly affects the RFB performance. In this paper, chloric/sulfuric mixed acidwas used as a supporting electrolyte in RFB system with Fe2+/Fe3+ and V2+/V3+ as redox couple. The optimum electrode and activation temperature were suggested by comparing the capacity, coulombic efficiency and energy efficiency according to the electrode type and activation temperature. In the RFB single cell evaluation using 5 types of carbon electrodes used in the experiments, all of them showed close to the theoretical capacity to retain the reliability of the evaluation results. GFD4EA showed relatively excellent energy efficiency and charge/discharge capacity. In order to investigate the electrochemical performance according to the activation temperature, GFD4EA electrode was activated by heat treatment at different temperatures of 400, 450, 500, 600 and 700 ℃ under an air atmosphere. Changes in physical properties before and after the activation were observed using electrode mass retention, scanning electron microscope (SEM), XPS analysis, and electrochemical performance was compared by conducting RFB single evaluation using electrodes activated at each temperature given above.

Estimation of Potential Risk and Numerical Simulations of Landslide Disaster based on UAV Photogrammetry (무인 항공사진측량 정보를 기반으로 한 산사태 수치해석 및 위험도 평가)

  • Choi, Jae Hee;Choi, Bong Jin;Kim, Nam Gyun;Lee, Chang Woo;Seo, Jun Pyo;Jun, Byong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.675-686
    • /
    • 2021
  • This study investigated the ground displacement occurring in a slope below a waste-rock dumping site and estimated the likelihood of a disaster due to a landslide. To start with, photogrammetry was conducted by unmanned aerial vehicles (UAVs) to investigate the size and extent of the ground displacement. From April 2019 to July 2020, the average error rate of the five UAV surveys was 0.011-0.034 m, and an elevation change of 2.97 m occurred due to the movement of the soil layer. Only some areas of the slope showedelevation change, and this was believed to be due to thegroundwater generated during rainfall rather than the effect of the waste-rock load at the top. Sensitivity analysis for LS-RAPID simulation was performed, and the simulation results were compared and analyzed by applying a digital elevation model (DEM) and a digital surface model (DSM)as terrain data with 10 m, 5 m, and 4 m grids. When data with high spatial resolution were used, the extent of the sedimentation of landslide material tended to be excessively expanded in the DEM. In contrast, in the result of applying a DSM, which reflects the topography in detail, the diffusion range was not significantly affected even when the spatial resolution was changed, and the sedimentation behavior according to the river shape could be accurately expressed. As a result, it was concluded that applying a DSM rather than a DEM does not significantly expand the sedimentation range, and results that reflect the site situation well can be obtained.

In vitro and In vivo Antimicrobial Activities of Medicinal Plants against Crown Gall in Grapevine (포도나무 줄기혹병균에 대한 약용식물의 항균활성 및 병발생억제)

  • Kim, Eun Su;Yun, Hae Keun
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.537-548
    • /
    • 2016
  • The objective of this study was to evaluate the antimicrobial activities of 9 kinds of medicinal plants against crown gall in grapevine. The medicinal plants extracted with several solvent systems were screened for in vitro antibacterial activity by the disc diffusion method. The ethanol and ethyl acetate extracts from magic lily flowers, tachys roots, asian plantain flowers and seeds, sweet wormwood leaves, stems and flowers, immature bitter melon fruits, cockscomb flowers, and peach tree resin showed in vitro antimicrobial activities against Rhizobium vitis with growth inhibition zones ranging from 10 to 27 mm in diameter. The minimum inhibitory concentration values of extracts against R.vitis ranged from 10,000 in Asian plantain flower and 50,000 fold diluted extracts in sweet wormwood flowers, stems, leaves, cockscomb leaves and immature bitter melon fruits. The active fractions of ethyl acetate and ethanol extracts from the medicinal plants were partially separated through silica gel column chromatography and thin layer chromatography (TLC). The active fractions were separated at Rf 0.36, 0.69, 0.75, 0.84, and 0.94 in sweet wormwood extracts, Rf 0.96 and 0.99 in cockscomb flower extracts, Rf 0.92 and 0.97 in cockscomb leaf extracts, and Rf 0.85 in immature bitter melon fruit extracts in TLC analysis developed with hexane:ethyl acetate (20:80, v/v) and methanol:chloroform (20:80, v/v). Among extracts from plants with in vitro antimicrobial activities, sweet wormwood, cockscomb leaves, and immature bitter melon fruits showed in vivo antimicrobial activities with inhibition activity of 100, 67, and 83.3%, respectively, in 'Kyoho' grapevine inoculated with R. vitis compared with the untreated control. These findings indicate that extracts of medicinal plants could be used as sustainable candidates to control crown gall disease caused by R. vitis in grapevines.

The effects of blocking the oxygen in the air during the polymerization of sealant (광중합 시 공기 중 산소의 차단이 치면열구전색제의 중합에 미치는 영향)

  • Oh, You-Hyang;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.3
    • /
    • pp.365-376
    • /
    • 2006
  • The purpose of this study was to evaluate the efficacy of blocking the oxygen in the air during the polymerization of sealant. All curing were performed with various light curing units under the application of oxygen gel barrier, stream of nitrogen and carbon dioxide gas for inhibition of oxygen diffusion into sealant surface. The results of present study can be summarized as follows : 1. The amount of eluted TEGDMA form the specimens cured with all the three different light units in the stream of $N_2$ and $CO_2$ gas and application of Oxygen gel barrier($DeOx^{(R)}$) were significantly lower than in the room-air atmosphere (Control) (p<0.05). 2. In the $DeOx^{(R)}$ application, the amount of eluted TEGDMA the specimen cured with PAC light for 10seconds was less than that cured in the stream of $N_2$ and $CO_2$ atmospheric conditions (p<0.05) 3. In the LED using 10 or 20sec irradiation times under the stream of $N_2$ and $CO_2$, the eluted TEGDMA showed to be no statistically significant difference (p>0.05). 4. The microhardness from the specimens cured with all the three different light units under each treated conditions were significantly higher than in the room-air atmosphere (p<0.05). 5. The surface treatment by $DeOx^{(R)}$, $N_2$ and $CO_2$ reduces the thickness of oxygen inhibited layer by sp proximately 49% of the untreated control value.

  • PDF

Experimental Design of S box and G function strong with attacks in SEED-type cipher (SEED 형식 암호에서 공격에 강한 S 박스와 G 함수의 실험적 설계)

  • 박창수;송홍복;조경연
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.123-136
    • /
    • 2004
  • In this paper, complexity and regularity of polynomial multiplication over $GF({2^n})$ are defined by using Hamming weight of rows and columns of the matrix ever GF(2) which represents polynomial multiplication. It is shown experimentally that in order to construct the block cipher robust against differential cryptanalysis, polynomial multiplication of substitution layer and the permutation layer should have high complexity and high regularity. With result of the experiment, a way of constituting S box and G function is suggested in the block cipher whose structure is similar to SEED, which is KOREA standard of 128-bit block cipher. S box can be formed with a nonlinear function and an affine transform. Nonlinear function must be strong with differential attack and linear attack, and it consists of an inverse number over $GF({2^8})$ which has neither a fixed pout, whose input and output are the same except 0 and 1, nor an opposite fixed number, whose output is one`s complement of the input. Affine transform can be constituted so that the input/output correlation can be the lowest and there can be no fixed point or opposite fixed point. G function undergoes linear transform with 4 S-box outputs using the matrix of 4${\times}$4 over $GF({2^8})$. The components in the matrix of linear transformation have high complexity and high regularity. Furthermore, G function can be constituted so that MDS(Maximum Distance Separable) code can be formed, SAC(Strict Avalanche Criterion) can be met, and there can be no weak input where a fixed point an opposite fixed point, and output can be two`s complement of input. The primitive polynomials of nonlinear function affine transform and linear transformation are different each other. The S box and G function suggested in this paper can be used as a constituent of the block cipher with high security, in that they are strong with differential attack and linear attack with no weak input and they are excellent at diffusion.

Effect of Grain Size and Drying Temperature on Drying Characteristics of Soybean (Glycine max) Using Hot Air Drying (열풍건조 시의 건조 온도와 입경에 따른 콩(Glycine max)의 건조 특성)

  • Park, Hyeon Woo;Han, Won Young;Yoon, Won Byong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1700-1707
    • /
    • 2015
  • The effects of drying temperature on drying characteristics of soybeans with different grain sizes [6.0 (S), 7.5 (M), and 9.0 mm (L) (${\pm}0.2$)] with 25.0% (${\pm}0.8$) initial moisture content were studied. Drying temperatures varied at 25, 35, and $45^{\circ}C$, with a constant air velocity (13.2 m/s). Thin-layer drying models were applied to describe the drying process of soybeans. The Midilli-Kucuk model showed the best fit ($R^2$ >0.99). Based on the model parameters, drying time to achieve the target moisture content (10%) was successfully estimated. Drying time was strongly dependent on the size of soybeans and the drying temperature. The effective moisture diffusivity ($D_{eff}$) was estimated by the diffusion model based on Fick's second law. $D_{eff}$ values increased as grain size and drying temperature increased due to the combined effect of high temperatures and high drying rates, which promote compact tissue. Deff values of S, M, and L estimated were in the range of $0.83{\times}10^{-10}$ to $1.51{\times}10^{-10}m^2/s$, $1.17{\times}10^{-10}$ to $2.17{\times}10^{-10}m^2/s$, and $1.53{\times}10^{-10}$ to $2.95{\times}10^{-10}m^2/s$, respectively, whereas activation energy ($E_a$) based on drying temperature showed no significant differences in the size of soybeans.