This study is about the number expressed and the number not expressed in terms of the sum of consecutive natural numbers with a difference of 2k. Since it is difficult to generalize in cases of onsecutive positive integers with a difference of 2k, the table of cases of 4, 6, 8, 10, and 12 was examined to find the normality and to prove the hypothesis through the results. Generalized guesswork through tables was made to establish and prove the hypothesis of the number of possible and impossible numbers that are to all consecutive natural numbers with a difference of 2k. Finally, it was possible to verify the possibility and impossibility of the sum of consecutive cases of 124 and 2010. It is expected to be investigated the sum of consecutive natural numbers with a difference of 2k + 1, as a future research task.
Communications for Statistical Applications and Methods
/
v.30
no.6
/
pp.631-652
/
2023
In the two-condition within-subject mediation design, pairs of variables such as mediator and outcome are observed under two treatment conditions. The main objective of the design is to investigate the indirect effects of the condition difference (sum) on the outcome difference (sum) through the mediator difference (sum) for comparison of two treatment conditions. The natural condition variables mean the original variables, while the rotated condition variables mean the difference and the sum of two natural variables. The outcome difference (sum) is expressed as a linear model regressed on two natural (rotated) mediators as a parallel two-mediator design in two condition approaches: the natural condition approach uses regressors as the natural condition variables, while the rotated condition approach uses regressors as the rotated condition variables. In each condition approach, the total indirect effect on the outcome difference (sum) can be expressed as the sum of two individual indirect effects: within- and cross-condition indirect effects. The total indirect effects on the outcome difference (sum) for both condition approaches are the same. The invariance of the total indirect effect makes it possible to analyze the nature of two pairs of individual indirect effects induced from the natural conditions and the rotated conditions. The two-condition within-subject design is extended to the addition of a between-subject moderator. Probing of the conditional indirect effects given the moderator values is implemented by plotting the bootstrap confidence intervals of indirect effects against the moderator values. The expected indirect effect with respect to the moderator is derived to provide the overall effect of moderator on the indirect effect. The model coefficients are estimated by the structural equation modeling approach and their statistical significance is tested using the bias-corrected bootstrap confidence intervals. All procedures are evaluated using function lavaan() of package {lavaan} in R.
In this paper, we prove stability of the reciprocal difference functional equation $$r\(\frac{{\sum}_{i=1}^{m}x_i}{m}\)-r\(\sum_{i=1}^{m}x_i\)=\frac{(m-1){\prod}_{i=1}^{m}r(x_i)}{{\sum}_{i=1}^{m}{\prod}_{k{\neq}i,1{\leq}k{\leq}m}r(x_k)$$ and the reciprocal adjoint functional equation $$r\(\frac{{\sum}_{i=1}^{m}x_i}{m}\)+r\(\sum_{i=1}^{m}x_i\)=\frac{(m+1){\prod}_{i=1}^{m}r(x_i)}{{\sum}_{i=1}^{m}{\prod}_{k{\neq}i,1{\leq}k{\leq}m}r(x_k)$$ in m-variables. Stability of the reciprocal difference functional equation and the reciprocal adjoint functional equation in two variables were proved by K. Ravi, J. M. Rassias and B. V. Senthil Kumar [13]. We extend their result to m-variables in similar types.
In this paper, we investigate the transcendental meromorphic solutions with finite order of two different types of difference equations $${\sum\limits_{j=1}^{n}}a_jf(z+c_j)={\frac{P(z,f)}{Q(z,f)}}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ and $${\prod\limits_{j=1}^{n}}f(z+c_j)={\frac{P(z,f)}{Q(z,f)}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ that share three distinct values with another meromorphic function. Here $a_j$, $b_k$, $d_l$ are small functions of f and $a_j{\not{\equiv}}(j=1,2,{\ldots},n)$, $b_p{\not{\equiv}}0$, $d_q{\not{\equiv}}0$. $c_j{\neq}0$ are pairwise distinct constants. p, q, n are non-negative integers. P(z, f) and Q(z, f) are two mutually prime polynomials in f.
In tire presence of incident waves with different frequencies, there are second order sum and difference frequency wave exciting forces due to the nonlinearity of tire incident waves. Although the magnitude of these nonlinear wave forces are small, they act on TLPs at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency waveexciting forces occurring close to tire natural frequencies of TLPs often give greater contributions to high and law frequency resonant responses. Nonlinear motion responses and tension variations in the time domain are analyzed by solving the motion equations with nonlinear wave exciting forces using tire numerical analysismethod. The numerical results of time domain analysis for the nonlinear wave exciting forces on the ISSC TLP in regular waves are compared with the numerical and experimental ones of frequency domain analysis. The results of this comparison confirmed tire validity of the proposed approach.
This study attempted to examine a speaker identification method using difference sum and correlation coefficient determined from a pair of intensity level matrices of band-pass-filtered numeric sounds produced by ten female speakers of similar age and height. Subjects recorded three digit numbers at a quiet room at a sampling rate of 22 kHz on a personal computer. Collected data were band-pass-filtered at five different band ranges. Then, matrices of five intensity levels at 100 proportional time points were obtained. Pearson correlation coefficients and the sum of absolute intensity differences between a pair of given matrices were determined within and across the speakers. Results showed that very high correlation coefficient and small difference sum generally occurred within each speaker but some individual variation was also observed. Thus, the matrix pair with a higher coefficient and a smaller difference sum was averaged to form each individual's model. Comparison among the speakers yielded generally low coefficients and large differences, which suggests successful speaker identification, but among them there were a few cases with very high coefficients and small differences. Future studies will focus on finer band ranges and additional spectral parameters at some peak points of the intensity contour at a low frequency band.
In this note we study positive solutions of the mth order rational difference equation $x_n=(a_0+\sum{{m\atop{i=1}}a_ix_{n-i}/(b_0+\sum{{m\atop{i=1}}b_ix_{n-i}$, where n = m,m+1,m+2, $\ldots$ and $x_0,\ldots,x_{m-1}$ > 0. We describe a sufficient condition on nonnegative real numbers $a_0,a_1,\ldots,a_m,b_0,b_1,\ldots,b_m$ under which every solution $x_n$ of the above equation tends to the limit $(A-b_0+\sqrt{(A-b_0)^2+4_{a_0}B}$/2B as $n{\rightarrow}{\infty}$, where $A=\sum{{m\atop{i=1}}\;a_i$ and $B=\sum{{m\atop{i=1}}\;b_i$.
In this paper we investigate the boundedness character of the positive solutions of the rational difference equation of the form $$x_{n+1}=\frac{a_0+{{\sum}^k_{j=1}}a_jx_{n-j+1}}{b_0+{{\sum}^k_{j=1}}b_jx_{n-j+1}},\;\;n=0,\;1,...$$ where $k{\in}N,\;and\;a_j,b_j,\;j=0,\;1,...,\;k $, are nonnegative numbers such that $b_0+{{\sum}^k_{j=1}}b_jx_{n-j+1}>0$ for every $n{\in}N{\cup}\{0\}$. In passing we confirm several conjectures recently posed in the paper: E. Camouzis, G. Ladas and E. P. Quinn, On third order rational difference equations(part 6), J. Differ. Equations Appl. 11(8)(2005), 759-777.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.4
/
pp.1987-2001
/
2017
Low-density parity-check (LDPC) codes have attracted a great attention because of their excellent error correction capability with reasonably low decoding complexity. Among decoding algorithms for LDPC codes, the min-sum (MS) algorithm and its modified versions have been widely adopted due to their high efficiency in hardware implementation. In this paper, a self-adaptive MS algorithm using the difference of the first two minima is proposed for faster decoding speed and lower power consumption. Finding the first two minima is an important operation when MS-based LDPC decoders are implemented in hardware, and the found minima are often compressed using the difference of the two values to reduce interconnection complexity and memory usage. It is found that, when these difference values are bounded, decoding is not successfully terminated. Thus, the proposed method dynamically decides whether the termination-checking step will be carried out based on the difference in the two found minima. The simulation results show that the decoding speed is improved by 7%, and the power consumption is reduced by 16.34% by skipping unnecessary steps in the unsuccessful iteration without any loss in error correction performance. In addition, the synthesis results show that the hardware overhead for the proposed method is negligible.
In the presence of incident waves with different frequencies, the second order sum and difference frequency waves due to the nonlinearity of the incident waves come into existence. Although the magnitudes of the forces produced on a Tension Leg Platform(TLP) by these nonlinear waves are small, they act on the TLP at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency wave loads produced close to the natural frequencies of TLPs often give greater contributions to high and low frequency resonant responses. The second order wave exciting forces and moments have been obtained by the method based on direct integration of pressure acting on the submerged surface of a TLP. The components of the second order forces which depend on first order quantities have been evaluated using the three dimensional source distribution method. The numerical results of time domain analysis for the nonlinear wave exciting forces in regular waves are compared with the numerical ones of frequency domain analysis. The results of comparison confirmed the validity of the proposed approach.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.