ON THE RATIONAL(${\kappa}+1,\;{\kappa}+1$)-TYPE DIFFERENCE EQUATION

  • Stevic, Stevo (Mathematical Institute of the Serbian Academy of Science)
  • Published : 2007.05.31

Abstract

In this paper we investigate the boundedness character of the positive solutions of the rational difference equation of the form $$x_{n+1}=\frac{a_0+{{\sum}^k_{j=1}}a_jx_{n-j+1}}{b_0+{{\sum}^k_{j=1}}b_jx_{n-j+1}},\;\;n=0,\;1,...$$ where $k{\in}N,\;and\;a_j,b_j,\;j=0,\;1,...,\;k $, are nonnegative numbers such that $b_0+{{\sum}^k_{j=1}}b_jx_{n-j+1}>0$ for every $n{\in}N{\cup}\{0\}$. In passing we confirm several conjectures recently posed in the paper: E. Camouzis, G. Ladas and E. P. Quinn, On third order rational difference equations(part 6), J. Differ. Equations Appl. 11(8)(2005), 759-777.

Keywords