• Title/Summary/Keyword: device degradation

Search Result 474, Processing Time 0.028 seconds

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • U, Chang-Ho;Kim, Yeong-Lee;An, Cheol-Hyeon;Kim, Dong-Chan;Gong, Bo-Hyeon;Bae, Yeong-Suk;Seo, Dong-Gyu;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

Using Virtual Reality in Design of Street Space by Citizen Participation (주민참여형 가로공간설계에서 가상현실(VR)의 활용)

  • Lee, Seul-Bee;Eo, Sang-Jin;Ryu, Kyung-Moo;Kim, Young-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • Recently, many people have attempted to combine the 4th industry in various fields. Citizen participation has also become more important in the policy making and decision making process. Therefore, this study examined ways to encourage citizen participation by integrating the 4th industry in the field of urban planning and design. The research method was to design street space using virtual reality, and to examine the preference of design and the satisfaction of using a virtual reality device for Cheongju citizens and residents. The main result is that the use of VR in the design process of street space can achieve a sufficient outcome in terms of inducing resident participation. The opinions of the respondents before and after the VR experience were different from each other. After the VR experience, understanding, participation and interest in design were improved. On the other hand, during the course of the study, there are many difficulties in obtaining a place that satisfied the conditions of the PC-VR equipment. Although it can be used by connecting a smart phone and a VR device, the constraint of free movement and degradation of the graphic quality are inevitable. In addition, it is difficult to operate simple interfaces because VR devices are not yet popularized. Accordingly, it will be necessary to popularize and commercialize VR equipment and establish a legal basis.

Degradation of a nano-thick Au/Pt bilayered catalytic layer with an electrolyte in dye sensitized solar cells (염료감응태양전지의 Au/Pt 이중 촉매층의 전해질과의 반응에 따른 열화)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4013-4018
    • /
    • 2014
  • A 0.45 $cm^2$ DSSC device with a glass/FTO/blocking layer/$TiO_2$/N719(dye)/electrolyte/50 nm-Pt/50 nm-Au/FTO/glass was prepared to examine the stability of the Au/Pt bilayered counter electrode (CE) with electrolyte and the energy conversion efficiency (ECE) of dye-sensitized solar cells (DSSCs). For comparison, a 100 nm-thick Pt only CE DSSC was also prepared using the same method. The photovoltaic properties, such as the short circuit current density ($J_{sc}$), open circuit voltage ($V_{oc}$), fill factor (FF), and ECE, were checked using a solar simulator and potentiostat with time after assembling the DSSC. The microstructure of the Au/Pt bilayer was examined by optical microscopy after 0~25 minutes. The ECE of the Pt only CE-employed DSSC was 4.60 %, which did not show time dependence. On the other hand, for the Au/Pt CE DSSC, the ECEs after 0, 5 and 15 minutes were 5.28 %, 3.64 % and 2.09 %, respectively. The corrosion areas of the Au/Pt CE determined by optical microscopy after 0, 5, and 25 minutes were 0, 21.92 and 34.06 %. These results confirmed that the ECE and catalytic activity of Au/Pt CE decreased drastically with time. Therefore, a Au/Pt CE-employed DSSC may be superior to the Pt only CE-employed one immediately after integration of the device, but it would degrade drastically with time.

PSNR Correlation between CR and DR according to Changed KvP (CR과 DR의 kVp 변화에 따른 PSNR 상관관계)

  • Kim, Jisun;Ahn, Byungju
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.417-422
    • /
    • 2014
  • In this study, the influence degree of the scattering of the line depending on the incident energy of the radiation objective was to evaluate a new method of quantitative methods of PSNR is provided.Value of MSE and PSNR of the DR and the Target is placed at the left when there was no change in CR Target, the change appeared to ttaran MSE and PSNR value in tube voltage. Both CR and DR seen that there is a variation of the MSE and PSNR depending on the tube voltage change Computon showed that the scattered radiation effects. If the CR and DR 80 The changes in the MSE and PSNR experience the symptoms suddenly occur in areas kVp was found to affect the optoelectronic Computon E, and at the same time, the scattered radiation detector Computon Computon by scattering due to the photoelectric effect. CR and DR of the imaging device in the future on the basis of the energy bands of the photoelectric effect of 60 kVp 70 kVp, 80 kVp, 90 kVp, compares the value of the PSNR and MSE 100 kVp in accordance with the change of the tube voltage of the CR and device DR proposes jigil scattering study of the degradation of the line quality is achieved.

Changes of Acoustic Reflex Thresholds and Speech-In-Noise Perception Using Personal Listening Device Under Subway Interior Noise (지하철 실내 소음 하에서 음향기기 사용에 따른 음향반사역치와 소음 속 어음인지 변화)

  • Han, Woojae;Chun, Hyungi;Ma, Sunmi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.138-145
    • /
    • 2015
  • Although it is well-known that environmental noise can lead to hearing loss in individuals, the true extent of subway noise effects in the general population remains poorly understood. The purpose of the present study is to see changes of acoustic reflex thresholds and speech perception scores when passengers listen to music presented from their personal listening device in the subway. Forty subjects with normal hearing participated being divided into two groups, experimental and control groups. As a baseline, all subjects were measured by acoustic reflex thresholds in five test frequencies and Korean speech perception in noise (KSPIN) test at 0 and -5 dB SNR. In the experiment, the control group read newspaper or magazine in the subway noise, whereas the experimental group listened to music presented from their smartphone under the subway noise through speakers at 73.45 dBA for 60 min. After completing the experiment, two groups also conducted both acoustic reflex thresholds and KSPIN tests in the same condition as the baseline. The results showed that there was a significant difference of correct percent in speech-in-noise test between experimental and control groups and of that between two signal-to-noise ratios, which means the double noise exposure of 60 min might cause some degradation of speech perception when noise increases compared to only subway noise condition that was not statistically significant difference. We concluded that a risk of some degraded speech perception ability would be expected when passengers have a habit of listening to music in the subway noisy situation for a long duration.

Characteristics of $Al_2O_3/TiO_2$ multi-layers as moisture permeation barriers deposited on PES substrates using ECR-ALD

  • Gwon, Tae-Seok;Mun, Yeon-Geon;Kim, Ung-Seon;Mun, Dae-Yong;Kim, Gyeong-Taek;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.457-457
    • /
    • 2010
  • Flexible organic light emitting diodes (F-OLEDs) requires excellent moisture permeation barriers to minimize the degradation of the F-OLEDs device. Specifically, F-OLEDs device need a barrier layer that transmits less than $10^{-6}g/m^2/day$ of water and $10^{-5}g/m^2/day$ of oxygen. To increase the life time of F-OLEDs, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. Thus, $Al_2O_3/TiO_2$ multi-layer was deposited onto the polyethersulfon (PES) substrate by electron cyclotron resonance atomic layer deposition (ECR-ALD), and the water vapor transmission rates (WVTR) were measured. WVTR of moisture permeation barriers is dependent upon density of films and initial state of polymer surface. A significant reduction of WVTR was achieved by increasing density of films and by applying low plasma induced interlayer on the PES substrate. In order to minimize damage of polymer surface, a 10 nm thick $TiO_2$ was deposited on PES prior to a $Al_2O_3$ ECR-ALD process. High quality barriers were developed from $Al_2O_3$ barriers on the $TiO_2$ interlayer. WVTR of $Al_2O_3$ by introducing $TiO_2$ interlayer was recorded in the range of $10^{-3}g/m^2.day$ at $38^{\circ}C$ and 100% relative humidity using a MOCON instrument. The WVTR was two orders of magnitude smaller than $Al_2O_3$ barriers directly grown on PES substrate without the $TiO_2$ interlayer. Thus, we can consider that the $Al_2O_3/TiO_2$ multi-layer passivation can be one of the most suitable F-OLEDs passivation films.

  • PDF

Characteristics of Nickel_Titanium Dual-Metal Schottky Contacts Formed by Over-Etching of Field Oxide on Ni/4H-SiC Field Plate Schottky Diode and Improvement of Process (Ni/4H-SiC Field Plate Schottky 다이오드 제작 시 과도 식각에 의해 형성된 Nickel_Titanium 이중 금속 Schottky 접합 특성과 공정 개선 연구)

  • Oh, Myeong-Sook;Lee, Jong-Ho;Kim, Dae-Hwan;Moon, Jeong-Hyun;Yim, Jeong-Hyuk;Lee, Do-Hyun;Kim, Hyeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap (3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diode is the representative high-power device that is currently available commercially. A field plate edge-terminated 4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metal contacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation of the electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ${\Phi}_B$) was 107 V and 0.67 eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition and etching method was employed, and the electrical properties of the diodes were improved. The modified SBDs showed enhanced electrical properties, as witnessed by a breakdown voltage of 635 V, a Schottky barrier height of ${\Phi}_B$=1.48 eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of $V_F$=1.6 V, a specific on resistance of $R_{on}=2.1m{\Omega}-cm^2$ and a power loss of $P_L=79.6Wcm^{-2}$.

Improved breakdown characteristics of Ga2O3 Schottky barrier diode using floating metal guard ring structure (플로팅 금속 가드링 구조를 이용한 Ga2O3 쇼트키 장벽 다이오드의 항복 특성 개선 연구)

  • Choi, June-Heang;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.193-199
    • /
    • 2019
  • In this study, we have proposed a floating metal guard ring structure based on TCAD simulation in order to enhance the breakdown voltage characteristics of gallium oxide ($Ga_2O_3$) vertical high voltage switching Schottky barrier diode. Unlike conventional guard ring structures, the floating metal guard rings do not require an ion implantation process. The locally enhanced high electric field at the anode corner was successfully suppressed by the metal guard rings, resulting in breakdown voltage enhancement. The number of guard rings and their width and spacing were varied for structural optimization during which the current-voltage characteristics and internal electric field and potential distributions were carefully investigated. For an n-type drift layer with a doping concentration of $5{\times}10^{16}cm^{-3}$ and a thickness of $5{\mu}m$, the optimum guard ring structure had 5 guard rings with an individual ring width of $1.5{\mu}m$ and a spacing of $0.2{\mu}m$ between rings. The breakdown voltage was increased from 940 V to 2000 V without degradation of on-resistance by employing the optimum guard ring structure. The proposed floating metal guard ring structure can improve the device performance without requiring an additional fabrication step.

Implementation of Electrical and Optical characteristics based on new packaging in UV LED (UV LED의 광효율 및 방열성능 향상을 위한 new packaging 특성 연구)

  • Kim, Byoung Chol;Park, Byeong Seon;Kim, Hyeong-Jin;Kim, Yong-Kab
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.21-29
    • /
    • 2022
  • Ultra Violet(UV) is gradually being replaced with LED instead of general UV lamps. However, the light efficiency of UV LED is still lower than that of the general lamp, and the light efficiency is also low. Due to the current environment and technical problems of UV lamps, the LED replacements are gradually being made. In this study, a new package design and analysis were performed to increase the lifetime and performance of UV LEDs. A new packaging for UV LED were designed and implemented. The new packaging for UV LED was constructed to improve light efficiency. And the electrical and optical characteristics were analyzed respectively. To improve the optical efficiency in UV LED package, the Al has been used based on high reflectivity and applying the optimal lens focusing. Compared to the existing silver Ag, the light efficiency was improved by about 30% or more, and it was confirmed that the light output degradation characteristic was improved by about 10% in the newly applied optical device chip.

Minimizing Security Hole and Improving Performance in Stateful Inspection for TCP Connections (TCP연결의 스테이트풀 인스펙션에 있어서의 보안 약점 최소화 및 성능 향상 방법)

  • Kim, Hyo-Gon;Kang, In-Hye
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.4
    • /
    • pp.443-451
    • /
    • 2005
  • Stateful inspection devices must maintain flow information. These devices create the flow information also for network attack packets, and it can fatally inflate the dynamic memory allocation on stateful inspection devices under network attacks. The memory inflation leads to memory overflow and subsequent performance degradation. In this paper, we present a guideline to set the flow entry timeout for a stateful inspection device to remove harmful embryonic entries created by network attacks. Considering Transmission Control Protocol (TCP) if utilized by most of these attacks as well as legitimate traffic, we propose a parsimonious memory management guideline based on the design of the TCP and the analysis of real-life Internet traces. In particular, we demonstrate that for all practical purposes one should not reserve memory for an embryonic TCP connection with more than (R+T) seconds of inactivity where R=0, 3, 9 and $1\leqq{T}\leqq{2}$ depending on the load level.