• 제목/요약/키워드: design objective

검색결과 6,773건 처리시간 0.033초

지진하중을 받는 다층 뼈대구조물의 다목적 최적설계 (Multi-Objective Optimization of Multistory Shear Building Under Seismic Loads)

  • 조효남;민대홍;정봉교
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.255-262
    • /
    • 2002
  • In this paper, an improved multi-objective optimmum design method is proposed. And it is applied to steel frames under seismic loads. The multi-objective optimization problem is formulated with three optimality criteria, namely, minimum structural weight and maximum strain energy and stability. The Pareto curve can be obtained by performing the multi-objective optimization for multistory shear buildings. In order to efficiently solve the multi-objective optimization problem the decomposition method that separates both system-level and element-level is used. In addition, various techniques such as effective reanalysis technique with respect to intermediate variables and sensitivity analysis using an automatic differentiation (AD) we incorporated. Moreover, the relationship function among section properties induced from the profile is used in order to link system-level and element level. From the results of numerical investigation, it may be stated that the proposed method will lead to the more rational design compared with the conventional one.

  • PDF

지형 선형 연결 설계 (Terrain-Alignment Linked Design)

  • 김용석
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.191-198
    • /
    • 2014
  • PURPOSES : Safety consciousness can be the first factor to hinder the acceptance of design alternative, which moderates the applied design criteria in order to adapt the road to the natural terrain condition. METHODS : The method which enables to check the safety of design alternative by using design consistency concept is suggested. The method is based on the linked or interactive analysis between terrain and road alignment. Real design example is considered as a guide how to apply the method and the analysis result is discussed with the future research. RESULTS : Suggested method can be used for designers as a tool to review their design outputs can be safe as much as the original design. So, designers have the more objective judgement on their designs and have the confidence on their designs. CONCLUSIONS : The method is expected to be used as a tool to see the safety consciousness in an objective view, so any possible conflicts between designers and design-related personnels caused by the terrain-oriented design can be solved.

Deep Learning-Based Inverse Design for Engineering Systems: A Study on Supervised and Unsupervised Learning Models

  • Seong-Sin Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.127-135
    • /
    • 2024
  • Recent studies have shown that inverse design using deep learning has the potential to rapidly generate the optimal design that satisfies the target performance without the need for iterative optimization processes. Unlike traditional methods, deep learning allows the network to rapidly generate a large number of solution candidates for the same objective after a single training, and enables the generation of diverse designs tailored to the objectives of inverse design. These inverse design techniques are expected to significantly enhance the efficiency and innovation of design processes in various fields such as aerospace, biology, medical, and engineering. We analyzes inverse design models that are mainly utilized in the nano and chemical fields, and proposes inverse design models based on supervised and unsupervised learning that can be applied to the engineering system. It is expected to present the possibility of effectively applying inverse design methodologies to the design optimization problem in the field of engineering according to each specific objective.

Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Structural Engineering and Mechanics
    • /
    • 제47권2호
    • /
    • pp.227-245
    • /
    • 2013
  • The term "constructability" in regard to cast-in-place concrete construction refers mainly to the ease of reinforcing steel placement. Bar congestion complicates steel placement, hinders concrete placement and as a result leads to improper consolidation of concrete around bars affecting the integrity of the structure. In this paper, a multi-objective approach, based on the non-dominated sorting genetic algorithm (NSGA-II) is developed for optimal design of reinforced concrete cantilever retaining walls, considering minimization of the economic cost and reinforcing bar congestion as the objective functions. The structural model to be optimized involves 35 design variables, which define the geometry, the type of concrete grades, and the reinforcement used. The seismic response of the retaining walls is investigated using the well-known Mononobe-Okabe analysis method to define the dynamic lateral earth pressure. The results obtained from numerical application of the proposed framework demonstrate its capabilities in solving the present multi-objective optimization problem.

NSGA-II를 통한 딤플채널의 다중목적함수 최적화 (Multi-Objective Optimization of a Dimpled Channel Using NSGA-II)

  • 이기돈;압두스 사마드;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.113-116
    • /
    • 2008
  • This work presents numerical optimization for design of staggered arrays of dimples printed on opposite surfaces of a cooling channel with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by three non-dimensional geometric design variables composed of dimpled channel height, dimple print diameter, dimple spacing and dimple depth to maximize heat transfer rate compromising with pressure drop. Twenty designs generated by Latin hypercube sampling were evaluated by Reynolds-averaged Navier-Stokes solver and the evaluated objectives were used to construct Pareto optimal front through hybrid multi-objective evolutionary algorithm. The optimum designs were grouped by k-mean clustering technique and some of the clustered points were evaluated by flow analysis. With increase in dimple depth, heat transfer rate increases and at the same time pressure drop also increases, while opposite behavior is obtained for the dimple spacing. The heat transfer performance is related to the vertical motion of the flow and the reattachment length in the dimple.

  • PDF

Multi-objective optimization design for the multi-bubble pressure cabin in BWB underwater glider

  • He, Yanru;Song, Baowei;Dong, Huachao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.439-449
    • /
    • 2018
  • In this paper, multi-objective optimization of a multi-bubble pressure cabin in the underwater glider with Blended-Wing-Body (BWB) is carried out using Kriging and the Non-dominated Sorting Genetic Algorithm (NSGA-II). Two objective functions are considered: buoyancy-weight ratio and internal volume. Multi-bubble pressure cabin has a strong compressive capacity, and makes full use of the fuselage space. Parametric modeling of the multi-bubble pressure cabin structure is automatic generated using UG secondary development. Finite Element Analysis (FEA) is employed to study the structural performance using the commercial software ANSYS. The weight of the primary structure is determined from the volume of the Finite Element Structure (FES). The stress limit is taken into account as the constraint condition. Finally, Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) method is used to find some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. The best solution is compared with the initial design results to prove the efficiency and applicability of this optimization method.

의복관련 맞음새 평가에 관한 연구동향 - 2000~2016년 국내학회지를 중심으로 - (Trend of Studies on the Evaluation of Clothing Fit - Focusing on Domestic Research Journals of 2000~2016year -)

  • 이진희;김윤희
    • 한국의상디자인학회지
    • /
    • 제18권4호
    • /
    • pp.159-170
    • /
    • 2016
  • This study is aimed to research the trend of studies on the evaluation of clothing fit using the domestic research journals. clothing fit has long been regarded as the most important element to customers in clothing appearance. Understanding fit from a consumer's perspective is complex. 85 articles were collected from domestic academic sites (KISS, DBpia, KiSTi). Many clothing fit articles published on the 2011-2016 year. In research target, young women were more than other age groups. On the evaluation of clothing fit, method of clothing fit classified survey using the questionnaire and wearing test. Many articles were used the survey using the questionnaire, 57.7%. The other articles were used wearing test with professional analyst and objective evaluation tool. Objective evaluation was used 3D virtual wearing systems (i-designer, DC suit, CLO et al). In the survey using the questionnaire and wearing test using the objective evaluation, jacket and pants were researched on the clothing items mainly. Many young women put on the jacket and pants to active energetically. In the future, researches related clothing fit need to develop the objective and accuracy evaluation tool of clothing fit.

  • PDF

처짐과 무게를 고려한 주물 프레임의 다중목적 근사최적설계 (Approximate Multi-Objective Optimization of Robot Casting Considering Deflection and Weight)

  • 최하영;이종수;박준오
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.954-960
    • /
    • 2012
  • Nowadays, rapidly changing and unstable global economic environments request a lot of roles to engineers. In this situation, product should be designed to make more profit by cost down and to satisfy distinguished performance comparing to other competitive ones. In this research, the optimization design of the industrial robot casting will be done. The weight and deflection have to be reduced as objective functions and stress has to be constrained under some constant value. To reduce time cost, CCD (Central Composite Design) will be used to make experimental design. And RSM (Response Surface Methodology) will be taken to make regression model for objective functions and constraint function. Finally, optimization will be done with Genetic Algorithm. In this problem, the objective functions are multiple, so NSGA-II which is brilliant and efficient for such a problem will be used. For the solution quality check, the diversity between Pareto solutions will be also checked.

Multiobjective Optimization of Three-Stage Spur Gear Reduction Units Using Interactive Physical Programming

  • Huang Hong Zhong;Tian Zhi Gang;Zuo Ming J.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1080-1086
    • /
    • 2005
  • The preliminary design optimization of multi-stage spur gear reduction units has been a subject of considerable interest, since many high-performance power transmission applications (e.g., automotive and aerospace) require high-performance gear reduction units. There are multiple objectives in the optimal design of multi-stage spur gear reduction unit, such as minimizing the volume and maximizing the surface fatigue life. It is reasonable to formulate the design of spur gear reduction unit as a multi-objective optimization problem, and find an appropriate approach to solve it. In this paper an interactive physical programming approach is developed to place physical programming into an interactive framework in a natural way. Class functions, which are used to represent the designer's preferences on design objectives, are fixed during the interactive physical programming procedure. After a Pareto solution is generated, a preference offset is added into the class function of each objective based on whether the designer would like to improve this objective or sacrifice the objective so as to improve other objectives. The preference offsets are adjusted during the interactive physical programming procedure, and an optimal solution that satisfies the designer's preferences is supposed to be obtained by the end of the procedure. An optimization problem of three-stage spur gear reduction unit is given to illustrate the effectiveness of the proposed approach.

Probabilistic performance-based optimal design of low-rise eccentrically braced frames considering the connection types

  • Mohammad Ali Fathalia;Seyed Rohollah Hoseini Vaez
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.673-687
    • /
    • 2023
  • In this study, the weight and the connections type layout of low-rise eccentrically braced frame (EBF) have been optimized based on performance-based design method. For this purpose, two objective functions were defined based on two different aspects on rigid connections, in one of which minimization and in the other one, maximization of the number of rigid connections was considered. These two objective functions seek to increase the area under the pushover curve, in addition to the reduction of the weight and selection of the optimum connections type layout. The performance of these objective functions was investigated in optimal design of a three-story eccentrically braced frame, using two meta-heuristic algorithms: Enhanced Colliding Bodies Optimization (ECBO) and Enhanced Vibrating Particles System (EVPS). Then, the reliability indices of the optimal designs for both objective functions were calculated for the story lateral drift limits using Monte-Carlo Simulation (MCS) method. Based on the reliability assessment results of the optimal designs and taking the three levels of safety into account, the final designs were selected and their specifications were compared.