• Title/Summary/Keyword: design for safely

Search Result 474, Processing Time 0.023 seconds

A Design Variable Study of Plane Stress Element by Reliability Analysis (신뢰성 해석에 의한 평면응력요소의 설계변수 분석)

  • 박석재;최외호;김요숙;신영수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.102-109
    • /
    • 2001
  • In order to take account of the statistical properties of probability variables used in the structural analysis, the conventional approach using the safety factor based on past experience usually estimated the safety of a structure. The real structures could only be analyzed with the error in estimation of loads, material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis. Structural safety could not precisely be appraised by the traditional structural design concept. Recently, new approach based on the probability concept has been applied to the assessment of structural safety using the reliability concept. Thus, the computer program by the Probabilistic FEM is developed by incorporating the probabilistic concept into the conventional FEM method. This paper estimated for the reliability of a plane stress structure by Advanced First-Order Second Moment method using von Mises, Tresca and Mohr-Coulomb failure criterions. The reliability index and failure probability of attained by the Monte Carlo Simulation method with the von Mises criterion were same as PFEM, but the Monte Carlo Simulation were very time-consuming. The variance of member thickness and load could influence the reliability and failure probability most sensitively among the design variables from the results of the parameter analysis. And proper failure criterion must be used to design safely.

  • PDF

Modularization of plant structures (플랜트 구조물의 모듈화 공법)

  • Seo, Han Seol;Chang, Sang Soo
    • Plant Journal
    • /
    • v.13 no.3
    • /
    • pp.30-35
    • /
    • 2017
  • Module can be categorized as PAS(Pre-Assembled Steel structure), PAR(Pre-Assembled pipe Rack), PAU(Pre-Assembled Unit), VAU(Vendor Assembled Unit) and VPU(Vendor Package Unit). At the stage of design and fabrication of module, the condition of land and ocean transportation is considered and these conditions are reflected on the module division design. The control of the module's center of gravity is important to transport and install modules safely and the steel structure should have the strength enough to resist the sea acceleration force during the ocean transportation. The transportation condition and the installation method influence the size and weight of module. The size and weight of module are considered for the design of module division.

  • PDF

Vortex induced vibrations and motions - Review, issues and challenges

  • Sahoo, Patitapaban;Domala, Vamshikrishna;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.301-333
    • /
    • 2022
  • Herein, we report meaningful and selective review of the progress made on 'Vortex Induced Vibration (VIV)' and 'Vortex Induced Motion (VIM)' of 'Structures of Specific Shapes (SoSS)' subjected to steady uniform flow and of relevance to/in marine structures. Important and critical elements of the numerical methods, experimental methods, and physical ideas are listed and analysed critically and the limitations of the current state of art of VIV/VIM are discussed in-detail. Our focus and aim are to analyse the existing researches with respect to the application in analyses, design and production of marine structures and the reported reviews centre on these only. We identify the critical and important issues that exist in the current literature and utilise these issues to highlight the challenges that need to be tackled to design and develop new age marine structures that can exist and operate safely in the areas of dominance by the VIV/VIM. Finally, we also identify some areas for future scope of research on VIV/VIM.

A Software Engineering Process for Safety-critical Software Application (Safety-critical 소프트웨어 적용을 위한 소프트웨어 개발 절차)

  • Kang, Byung-Heon;Kim, Hang-Bae;Chang, Hoon-Seon;Jeon, Jong-Sun;Park, Suk-Joon
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.84-95
    • /
    • 1995
  • Application of computer software to safety-critical systems is on the increase. To be successful, the software must be designed and constructed to meet the functional and performance requirements of the system. For safety reason, the software must be demonstrated not only to meet these requirements, but also to operate safely as a component within the system. For longer-term cost consideration, the software must be designed and structured to ease future maintenance and modifications. This paper present a software engineering process for the production of safety-critical software for a nuclear power plant The presentation is expository in nature of a viable high quality safety-critical software development. It is based on the ideas of a rational design process and on the experience of the adaptation of such process in the production of the safety-critical software for the Shutdown System Number Two of Wolsong 2, 3 & 4 nuclear power generation plants. This process is significantly different from a conventional process in terms of rigorous software development phases and software design techniques. The process covers documentation, design, verification and testing using mathematically precise notations and highly reviewable tabular format to specify software requirements and software design. These specifications allow rigorous, stepwise verification of software design against software requirements, and code against software design using static analysis. The software engineering process described in this paper applies the principle of information-hiding decomposition in software design using a modular design technique so that when a change is' required or an error is detected, the affected scope can be readily and confidently located. It also facilitates a sense of high degree of confidence in the ‘correctness’ of the software production, and provides a relatively simple and straightforward code implementation effort.

  • PDF

A Study on the Effective Downscaling Methodology for Design of a Micro Smart Grid Simulator

  • Ko, Yun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1425-1437
    • /
    • 2018
  • In this paper, a methodology was proposed to reduce the electrical level and spatial size of the smart grid with distributed generations (DGs) to a scale in which the electrical phenomena and control strategies for disturbances on the smart grid could be safely and freely experimented and observed. Based on the design methodology, a micro smart grid simulator with a substation transformer capacity of 190VA, voltage level of 19V, maximum breaking current of 20A and size of $2{\times}2m^2$ was designed by reducing the substation transformer capacity of 45MVA, voltage level of 23kV and area of $2{\times}2km^2$ of the smart grid to over one thousandth, and also reducing the maximum breaking current of 12kA of the smart grid to 1/600. It was verified that the proposed design methodology and designed micro smart grid simulator were very effective by identifying how all of the fault currents are limited to within the maximum breaking current of 20A, and by confirming that the maximum error between the fault currents obtained from the fault analysis method and the simulation method is within 1.8% through the EMTP-RV simulation results to the micro smart grid simulator model.

Design of a Nuclear Fuel Spacer Grid Considering Impact and Wear (충격과 마모를 고려한 원자로 핵연료봉 지지격자의 설계)

  • Lee, Hyun-Ah;Kim, Chong-Ki;Song, Kee-Nam;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.999-1008
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods safely. Therefore, the spacer grid set should have sufficient strength for the external impact forces such as earthquake. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to flow-induced vibration. Conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined for the impact load and the fretting wear, and corresponding design parameters are selected. The overall flow of design is defined according to the application of axiomatic design. Design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. The deformation of a structure is called homologous if a given geometrical relationship holds before, during, and after the deformation. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis.

A Framework Design of an Active Supply Chain Risk Management System from the Perspective of Shippers (화주 중심의 능동적인 공급망 위험관리 시스템의 프레임워크 설계)

  • Song, Byung-Jun;Ahn, Hye-Jeong;Rhee, Jong-Tae;Lee, Jong-Yun
    • The KIPS Transactions:PartA
    • /
    • v.18A no.4
    • /
    • pp.151-158
    • /
    • 2011
  • For the purpose of cost saving and sales promotion, various industry companies have introduced logistics management techniques in their field. However, enterprises faced to damages because proper products can not be provided to customers in basic logistics 3S1L(speedy, safely, surely, and low) principles for environments changing rapidly and inflexible business processes. So, we need the ability in coping with risk to handle this phenomenon. In particular, the shipper of key decisions of supply chain risk management requires continuous exchange and collection of logistics information in the third-party logistics. However the current SCRMS(Supply Chain Risk Management System) is not sufficient to cover the shipper's various needs and to recognize and respond to emergency situations. Therefore, this paper proposes an active SCRMS framework through the reconsideration about the previous research on SCRM and rearrangement of risk factors for coping with those problems. in addition, it verifies an efficiency through a stability comparison with the current system.

A Study of Way guide System Design for a Visual Handicapped in School (교육기관 내 시각장애인 목적지안내 시스템 디자인 연구)

  • Lee, Joong-Yeu;Cho, Wan-Sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.75-82
    • /
    • 2010
  • At this time, our country's social welfare system for the handicapped is switching to increase independence, education is the most important. This study increases the quality of Visual handicapped people's life which have limit to learn and reduces their inconvenience which may occur during their independent school life through the development of the system which helps them safely to reach their destination by themselves using IT technologies in an educational institute which helps their ability to get information and be independent. This study supports Visual handicapped people to move safely by using cell phone which is necessary items for most modern people, RFID tags and white canes with antenna and reader which read the information installed in the raised blocks outside of school buildings and in the hall or aisle inside of buildings and inform the path by voice and vibration.

A Study on Reliability Assessment of Aircraft Structural Parts (항공기 동적 부분품에 대한 신뢰성 평가)

  • Kim, Eun-Jeong;Won, Jun-Ho;Choi, Joo-Ho;Kim, Tae-Gon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.38-43
    • /
    • 2010
  • A continuing challenge in the aviation industry is how to safely keep aircraft in service longer with limited maintenance budgets. Therefore, all the advanced countries in aircraft technologies put great efforts in prediction of failure rate in parts and system, but in the domestic aircraft industry is lack of theoretical and experimental research. Prediction of failure rate provides a rational basis for design decisions such as the choice of part quality levels and derating factors to be applied. For these reasons, analytic prediction of failure rate is essential process in developing aircraft structure. In this paper, a procedure for prediction of failure rate for aircraft structural parts is presented. Cargo door kinematic parts are taken to illustrate the process, in which the failure rate for Hook part is computed by using Monte Carlo Simulation along with Response Surface Model, and system failure rate is obtained afterwards.

Design and Implementation of Paddle Type End of Arm Tool for Rescue Robot (인명 구조용 로봇의 패들형 말단 장치 설계 및 구현)

  • Kim, Hyeonjung;Lee, Ikho;An, Jinung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.205-212
    • /
    • 2018
  • This paper deals with the paddle type end of arm tool for rescue robot instead of rescue worker in dangerous environments such as fire, earthquake, national disaster and defense. It is equipped at the dual arm manipulator of the rescue robot to safely lift up an injured person. It consists of the paddle for lifting person, sensors for detecting insertion of person onto the paddle, sensor for measuring the tilting angle of the paddle, and mechanical compliance part for preventing incidental injuries. The electronics is comprised of the DAQ module to acquire the sensors data, the control module to treat the sensors data and to manage the errors, and the communication module to transmit the sensors data. After optimally designing the mechanical and electronical parts, we successfully made the paddle type end of arm tool and evaluated its performance by using specially designed jigs. The developed paddle type end of arm tool is going to be applied to the rescue robot for performance verification through field testing.