Browse > Article
http://dx.doi.org/10.12989/ose.2022.12.3.301

Vortex induced vibrations and motions - Review, issues and challenges  

Sahoo, Patitapaban (Design and Simulation Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras)
Domala, Vamshikrishna (Post Doctoral Fellow, CADIT Laboratory, Department of Naval Architecture and Ocean Engineering, Seoul National University)
Sharma, R. (Design and Simulation Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras)
Publication Information
Ocean Systems Engineering / v.12, no.3, 2022 , pp. 301-333 More about this Journal
Abstract
Herein, we report meaningful and selective review of the progress made on 'Vortex Induced Vibration (VIV)' and 'Vortex Induced Motion (VIM)' of 'Structures of Specific Shapes (SoSS)' subjected to steady uniform flow and of relevance to/in marine structures. Important and critical elements of the numerical methods, experimental methods, and physical ideas are listed and analysed critically and the limitations of the current state of art of VIV/VIM are discussed in-detail. Our focus and aim are to analyse the existing researches with respect to the application in analyses, design and production of marine structures and the reported reviews centre on these only. We identify the critical and important issues that exist in the current literature and utilise these issues to highlight the challenges that need to be tackled to design and develop new age marine structures that can exist and operate safely in the areas of dominance by the VIV/VIM. Finally, we also identify some areas for future scope of research on VIV/VIM.
Keywords
catenary riser; computer simulation model; current velocity; moored structure; semi-submersible; steel catenary riser; towing velocity; vortex induced motion; vortex induced vibration;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Lindenburg, C. (2012), "Technical Report ECN-I--05-005 r11: PHATAS release 'JAN-2012b' user's manual", Energy Research Centre of the Netherlands (ECN). Petten; 2012, website address: www.ecn.nl/publications
2 King, R. (1948), "Vortex excited structural oscillations of a circular cylinder in steady currents", Proceedings of the Ocean Technology Conference, 143-154, Houston, Texas, USA, May 6-8. https://www.onepetro.org/conference-paper/OTC-1948-MS.
3 Koop, A., de Wilde, J., Fujarra, A.L.C., Rijken, O., Linder, S., Lennblad, J., Huag, N. and Phadke, A. (2016), "Investigations on reasons for possible difference between VIM response in the field and in model tests", Proceedings of the 35th international conference on Ocean, Offshore and Arctic Engineering, OMAE2016-54746, in Proceedings of the ASME, Busan, South Korea, June 19-24. https://doi.org/10.1115/OMAE2016-54746.   DOI
4 Wang, J., Fu, S., Baarholm, R., Wu, J. and Larsen, C.M. (2015a), "Out-of-plane vortex-induced vibration of a steel catenary riser caused by vessel motions", Ocean Eng., 109, 389-400. https://doi.org/10.1016/j.oceaneng.2015.09.004.   DOI
5 Von Karman, T. (1912), "Uber den Mechanismuss des Widerstandes den ein bewegter Korper in einen Flussigkeit Erfahrt", Nachrichten der K. Gesellschaft der Wissenschaften zu Gottingen, 547-556.
6 Han, X., Tang, Y., Feng, Z., Meng, Z., Qiu, A., Lin, W. and Wu, J. (2018), Vortex-Induced Vibration of a Marine Riser: Numerical Simulation and Mechanism Understanding, New Innovations in Engineering Education and Naval Engineering. IntechOpen.
7 Goncalves, R.T., Rosetti, G.F., Fujarra, A.L.C. and Oliverira, A.C. (2013), "Experimental study on vortex - induced motions of a semisubmersible platform with four square columns, Part II: Effects of surface waves, external damping and draft condition", Ocean Eng., 62, 10-24. https://doi.org/10.1016/j.oceaneng.2013.01.019.   DOI
8 Gordon, A. (1967), "Circulation of the Caribbean sea", J. Geophys. Res., 72 (24), 6207-6223. https://doi.org/10.1029/jz072i024p06207.   DOI
9 Griffin, O.M. and Ramberg, S.E. (1982), "Some recent studies of vortex shedding with application to marine tubulars and risers", J. Energ. Resour. Technol., 104, 2-13. https://doi.org/10.1115/1.3230377.   DOI
10 Hartlen, R.T., Baines, W.D. and Currie, I.G. (1968), "Vortex excited oscillations of a circular cylinder, University of Toronto", Report UTME-TP 6809.
11 Ding, L., Zhang, L., Wu, C., Mao, X. and Jiang, D. (2014), "Flow induced motion and energy harvesting of bluff bodies with different cross sections", Energ. Convers. Manage., 91, 416-426. https://doi.org/10.1016/j.enconman.2014.12.039.   DOI
12 Bourguet, R., Karniadakis, G.E. and Triantafyllou, M.S. (2011a), "Vortex-induced vibrations of a long flexible cylinder in shear flow", J. Fluid. Eng., 677, 342-382. https://doi.org/10.1017/jfm.2011.90.   DOI
13 Bowers, J., Morton, I. and Mould, G. (1997), "Multivariate extreme value analysis of a moored semi-submersible", 10(6), 443-463. https://doi.org/10.1016/S0951-8339(97)80001-9.   DOI
14 Cifuentes, C., Kim, S., Kim, M.H. and Park, W.S. (2015), "Numerical simulation of the coupled dynamic response of a submerged floating tunnel with mooring lines in regular waves", Ocean Syst. Eng., 5(2), 109-123. https://doi.org/10.12989/ose.2015.5.2.109.   DOI
15 Domala, V. and Sharma, R. (2020), "An experimental study on vortex-induced motion responses of a moored semi-submersible with and without riser", Proceedings of the Institution of Mechanical Engineers, Part M: J. Eng. Maritime Environ., 234(2), 346-373. https://doi.org/10.1177/1475090219894805.   DOI
16 Facchinetti, M.L., De Langre, E. and Biolley, F. (2004), "Coupling of structure and wake oscillators in vortex-induced vibrations", J. Fluid. Struct., 19(2), 123-140. https://doi.org/10.1016/j.jfluidstructs.2003.12.004.   DOI
17 Fujarra, A.L.C., Goncalves, R.T., Faria, F., Cueva, M., Nishimoto, K. and Siqueira, E.F.N. (2009), "Mitigation of vortex-induced motions of a monocolumn platform", Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2009-79380, Honolulu, Hawaii, May 31 - June 5. https://doi.org/10.1115/OMAE2009-79380.   DOI
18 Antony, A., Vinayan, V., Halkyard, J., Kim, S.J., Holmes, S. and Spernjak, D. (2015), "A CFD based analysis of the Vortex Induced Motion of deep draft semisubmersibles", Proceedings of the 25th International Ocean and Polar Engineering Conference, Kona, Hawaii, USA, June.
19 Hourigan, K., Thompson, M.C. and Tan, B.T. (2001), "Self-sustained oscillations in flows around long blunt plates", J. Fluid. Struct., 15(3-4), 387-398. https://doi.org/10.1006/jfls.2000.0352.   DOI
20 Gosain, G.D., Sharma, R. and Kim, T.W. (2017), "An optimization model for preliminary stability and configuration analyses of semi-submersibles", Int. J. Maritime Eng., 159(3), 249-270. https://doi.org/10.5750/ijme.v159iA3.1028.   DOI
21 Goncalves, R.T., Rosetti, G.F., Fujarra, A.L.C. and Oliverira, A.C. (2012b), "Experimental study on vortex-induced motions of a semisubmersible platform with four square columns, Part I: Effects of current incidence angle and hull appendages", Ocean Eng., 54, 150-169. https://doi.org/10.1016/j.oceaneng.2012.06.032.   DOI
22 Hu, X., Zhang, X. and You, Y. (2019), "Experimental studies of the unsteady hydrodynamic loads on a tension-leg platform at high Reynolds numbers", J. Fluid. Struct., 87, 263-283. https://doi.org/10.1016/j.jfluidstructs.2019.03.024.   DOI
23 Huang, H. and Chen, H.C. (2020), "Investigation of mooring damping effects on vortex-induced motion of a deep draft semi-submersible by coupled CFD-FEM analysis", Ocean Eng., 210, 107418. https://doi.org/10.1016/j.oceaneng.2020.107418.   DOI
24 Hujis, F.A. (2007), "The influence of steel catenary risers on the first order motions of a semisubmersible", Proceedings of the 17th International Offshore and Polar Engineering Conference, Lisbon, Portugal, July, 1-6.
25 Goncalves, R.T., Fujarra, A.L.C., Rosetti, G.F. and Nishimoto, K. (2010b), "Mitigation of vortex-induced motion (VIM) on monocolumn platform: Forces and movements", J. Offshore Mech. Arct., 132, 041102-1-041102-16. https://doi.org/10.1115/1.4001440.   DOI
26 Liu, M., Xiao, L., Lu, H. and Shi, J. (2016), "Experimental investigations into the influences of pontoon and column configuration on vortex-induced motions of deep-draft semisubmersibles", Ocean Eng., 123, 262-277. https://doi.org/10.1016/j.oceaneng.2016.07.007.   DOI
27 Gosain, G.D. and Sharma, R. (2011), "Conceptual design of an ultra-low motion new-age semi-submersible platform", J. Inst. Engineers (India) in Marine Eng. [MR], 92, 3-10.
28 Griffin, O.M., Skop, R.A. and Ramberg, S.E. (1975), "The resonant, vortex-excited vibrations of structures and cable systems", Proceedings of the 7th annual Offshore Technology conference, OTC 2319, Houston, Texas, May, 5-8. https://doi.org/10.4043/2319-MS.   DOI
29 Hong, K.S. and Shah, U.H. (2018), "Vortex-induced vibrations and control of marine risers: A review", Ocean Eng., 152, 300-315. https://doi:10.1016/j.oceaneng.2018.01.086.   DOI
30 Hover, F.S., Miller, S.N. and Triantafyllou, M.S. (1997), "Vortex-Induced vibration of marine cables: experiments using force feedback", J. Fluid. Struct., 11, 307-326. https://doi.org/10.1006/jfls.1996.0079.   DOI
31 Williamson, C.H.K. and Govardhan, R. (2004), "Vortex-induced vibrations", Annu. Rev. Fluid Mech., 36, 413-455. https://doi:10.1146/annurev.fluid.36.050802.122128.   DOI
32 Domala, V. and Sharma, R. (2019), "Design and development of an efficient computer simulation model for response analysis of a moored semi-submersible", The Transactions of The Royal Institution of Naval Architects (Transactions RINA Part A) - Int. J. Maritime Eng., 161(1), 13-40. https://doi.org/10.5750/ijme.v161iA1.1078.   DOI
33 Bearman, P.W. (1984), "Vortex shedding from oscillating bluff bodies", Annu. Rev. Fluid Mech., 16, 195-222. https://doi:10.1146/annurev.fl.16.010184.001211.   DOI
34 Bernitsas, M.M., Raghavan, K., Ben-Simon, Y. and Garcia, E.M.H. (2008), "VIVACE (Vortex Induced Vibration Clean Energy): A new concept in generation of clean and renewable energy from fluid flow", J. Offshore Mech. Art., 131(4).https://doi.org/10.1115/1.2957913.   DOI
35 Wang, Y., Gao, D. and Fang, J. (2015b), "Study on lateral vibration analysis of marine riser in installation-via variational approach", J. Nat. Gas Sci. Eng., 22, 523-529. https://doi.org/10.1016/j.jngse.2014.12.012.   DOI
36 Wang, Y., Yang, J., Peng, T. and Li, X. (2009), "Model test study on vortex-induced motions of a floating cylinder", Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79134, in Proceedings of the ASME, Honolulu, Hawaii, May 31 - June 5. https://doi.org/10.1115/OMAE2009-79134.   DOI
37 Xu, Q. (2011), "A new semisubmersible design for improved heave motion, vortex-induced motion and quayside stability", Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011-49118, 95-103, in Proceedings of the ASME, Rotterdam, The Netherlands, June, 19-24. https://doi.org/10.1115/OMAE2011-49118.   DOI
38 Sunil, D.K. and Mukhopadhyay, M. (1995), "Free vibration of semisubmersibles: A parametric study", Ocean Eng., 22(5), 489-502. https://doi.org/10.1016/0029-8018(94)00012-V.   DOI
39 Irani, M., Jennings, T., Geyer, J. and Krueger, E. (2015), "Some aspects of vortex induced motions of a multi-column floater", Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2015-41164, St. John's, NL, Canada, May 31 - June 5. https://doi.org/10.1115/OMAE2015-41164.   DOI
40 Johns, W., Townsend, T., Fratantoni, D. and Wilson, W. (2002), "On the Atlantic inflow to the Caribbean sea, deep-sea research part I", Oceanographic Research Papers, 49 (2), 211-243. https://doi.org/10.1016/s0967-0637(01)00041-3.   DOI
41 Tahar, A. and Kim, M.H. (2008), "Coupled-dynamic analysis of floating structures with polyester mooring lines", Ocean Eng., 35, 1676-1685. https://doi.org/10.1016/j.oceaneng.2008.09.004.   DOI
42 Martin, B. and Rijken, O. (2012), "Experimental analysis of surface geometry, external damping and waves on semisubmersible vortex induced motions", Proceedings of the 31st International Conference on Ocean, Offshore and Arctic Engineering, OMAE2012-83689, 809-816, in Proceedings of the ASME, Rio de Janeiro, Brazil, June, 1-6. https://doi.org/10.1115/OMAE2012-83689.   DOI
43 Hujis, F., Rogier de, B. and Feike, S. (2014), "Concept design verification of a semisubmersible floating wind turbine using coupled simulations", Energy Procedia, 53, 2-12. https://doi.org/10.1016/j.egypro.2014.07.210.   DOI
44 Jia, L., Liu, Y., Zhang, M., Fu, S. and Ren, H. (2022), "Experimental Research on Vortex-Induced Force Characteristics of Flexible Riser with Buoyancy Module and Strakes", Appl. Sci., 12(12), 6180. https://doi.org/10.3390/app12126180.   DOI
45 Kamble, C. and Chen, H.C. (2016), "CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers", Ocean Syst. Eng., 6(4), 325-344. https://doi.org/10.12989/ose.2016.6.4.325.   DOI
46 Eom, T.S., Kim, M.H., Bae, Y.H. and Cifuentes, C. (2014), "Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations", Ocean Syst. Eng., 4(3), 215-241. https://doi.org/10.12989/ose.2014.4.3.215.   DOI
47 Marcio, Y. and Celso, K.M. (2007), "Dynamic positioning of floating platform coupled with drilling riser", 40PDPETRO, Campinas, SP, 21-24 October.
48 Maximiano, A.S., Koop, A., de Wilde, J. and Goncalves, R.T. (2016), "Experimental study on the sensitivity of Vortex-Induced Motions (VIM) of a semisubmersible floater to damping and mass ratio", Proceedings of the 26th International Offshore and Polar Engineering Conference, ISOPE-2016, Rhodes, Greece, June 26- July 1. ISBN: 978-1-880653-88-3.
49 Meng, D. and Chen, L. (2012), "Nonlinear free vibrations and vortex-induced vibrations of fluid-conveying steel catenary riser", Appl. Ocean Res., 34, 52-67. https://doi.org/10.1016/j.apor.2011.10.002.   DOI
50 Mukundan, H., Hover, F.S. and Triantafyllou, M.S. (2010), "A systematic approach to riser VIV response reconstruction", J. Fluid. Struct., 26(5), 722-746. https://doi.org/10.1016/j.jfluidstructs.2010.04.001.   DOI
51 Naudascher, E. and Rockwell, D. (2012), Flow-induced vibrations: An engineering guide, International Association for Hydraulic Research, 7 (Corrected reissue of first Ed.). Mineola, New York, USA (A. A. Balkema Publishers, Rotterdam, Netherlands): (NB. Reissue contains additional errata list in appendix.) Courier Corporation.
52 Sarpkaya, T. (1979), "Vortex-induced oscillations: A selective review", J. Appl. Mech., 46(2), 241-258. https://doi:10.1115/1.3424537.   DOI
53 Xu, W.H., Zeng, X.H. and Wu, Y.W. (2008), "High aspect ratio (L/D) riser VIV prediction using wake oscillator model", Ocean Eng., 35, 1769-1774. https://doi.org/10.1016/j.oceaneng.2008.08.015.   DOI
54 Xu, W.H., Zeng, X.H., Wu, Y.W., Zeng, X.H., Xing-Fu, Z. and Xing, Y.J. (2010), "A new wake oscillator model for predicting vortex induced vibration of a circular cylinder", J. Hydrodynam., 22(3), 381-386. https://doi.org/10.1016/S1001-6058(09)60068-8.   DOI
55 Rijken, O., Schuurmans, S. and Leverette, S. (2011), "Experimental investigations into the influences of SCRS and appurtenances on deep draft semisubmersible vortex induced motion response", Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011-49365, 269-279, in Proceedings of the ASME, Rotterdam, The Netherlands, June, 19-24. https://doi.org/10.1115/OMAE2011-49365.   DOI
56 Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", J. Fluid. Struct., 19(4), 389-447. https://doi:10.1016/j.jfluidstructs.2004.02.005.   DOI
57 Sarpkaya, T., Isaacson, M. and Wehausen, J.V. (1982), Mechanics of wave forces on offshore structures, Van Nostrand Reinhold.
58 Jones, G. and Lamb, W.S. (1993), "The vortex induced vibration of marine risers in sheared and critical flows", Wave Kinematics and Environmental Forces, Advances in Underwater Technology, Ocean Science and Offshore Engineering, 29, 209-238. https://doi.org/10.1007/978-94-017-3663-3_11.   DOI
59 Khalak, A. and Williamson, C.H.K. (1996), "Dynamics of a hydro elastic cylinder with very low mass and damping", J. Fluid. Struct., 10, 455-472. https://doi.org/10.1006/jfls.1996.0031.   DOI
60 Kim, E.S. and Bernitsas, M.M. (2016), "Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion", Appl. Energ., 170, 92-100. https://doi.org/10.1016/j.apenergy.2016.02.116.   DOI
61 Park, M.S., Jeong, Y.J., You, Y.J., Lee, D.H. and Kim, B.C. (2014), "Numerical analysis of a hybrid substructure for offshore wind turbines", Ocean Syst. Eng., 4(3), 169-183. https://doi.org/10.12989/ose.2014.4.3.169.   DOI
62 Paula, P.B., Julio, C., Paula, G.C., Heather, H., Amy, B., Peter, H. and Robert, L. (2018), "Dominant circulation patterns of the deep gulf of Mexico", J. Phys. Oceanography, 48(3), 511, https://doi.org/10.1175/JPO-D-17-0140.1.   DOI
63 Placzek, A., Sigrist, J.F. and Hamdouni, A. (2009), "Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: Forced and free oscillations", Comput. Fluids, 38(1), 80-100. https://doi.org/10.1016/j.compfluid.2008.01.007.   DOI
64 Ramirez, J.M. (2021), "A coupled formulation of fluid-structure interaction and piezoelectricity for modeling a multi-body energy harvester from vortex-induced vibrations", Energ. Convers. Manage., 249, 114852. https://doi.org/10.1016/j.enconman.2021.114852.   DOI
65 Feng, C.C. (1968), "The measurement of vortex-induced effects in flow past stationary and oscillating cylinder and D-section cylinders", M.Sc. Thesis, University of British Columbia, Canada.
66 Bai, Z., Xiao, L., Kuo, Y. and Yang, L. (2013), "Research on vortex induced motion of a deep draft semisubmersible with four rectangular columns", Proceedings of the 23th International Offshore and Polar Engineering Conference, ISOPE-2013, Alaska, USA, June 30-July 5.
67 Bernitsas, M.M., Ben-Simon, Y., Raghavan, K. and Garcia, E.M.H. (2009), "The VIVACE converter: Model tests at high damping and Reynolds number around 105", J. Offshore Mech. Art., 131. https://doi.org/10.1115/1.2979796.   DOI
68 Blevins, R.D. (1990), "Flow induced vibrations", Van Nostrand Reinhold: Neywork, 2nd edition-1990.
69 Pallan, C.A. and Sharma, R. (2022), "A computer based simulation model for the fatigue damage assessment of deep water marine riser", Ocean Syst. Eng., 12(1), 87-142. https://doi.org/10.12989/ose.2022.12.1.087.   DOI
70 Maksoud, J. (2005), "Improved strake design reduces spar VIV", Offshore, Article 16764376, website address: www.offshore-mag.com/home/article/16764376/improved-strake-design-reduces-spar-viv.
71 Fischer, F.J., Liapis, S.I. and Kallinderis, Y. (2004), "Mitigation of current-driven, vortex-induced vibrations of a spar platform via "SMART" thrusters", J. Offshore Mech. Arct. Eng., 126, 96-104.   DOI
72 Gao, Y., Fu, S., Ren, T., Xiong, Y. and Song, L. (2015), "VIV response of a long flexible riser fitted with strakes in uniform and linearly sheared currents", Appl. Ocean Res., 52, 102-114. https://doi.org/10.1016/j.apor.2015.05.006.   DOI
73 Goncalves, R.T., Fujarra A.L.C., Rosetti, G.F., Kogishi, A.M. and Koop, A. (2015), "Effects of column designs on the VIM response of deep-draft semisubmersible platforms", Proceedings of the 25th International Offshore and Polar Engineering Conference, ISOPE-2015, Kona, Big Island, Hawaai, USA, June 21-26.
74 Goncalves, R.T., Rosetti, G.\F., Fujarra, A.L.C. and Nishimoto, K. (2012a), "An overview of relevant aspects on VIM of spar and monocolumn platforms", J. Offshore Mech. Arct., 134, 014501 1-7.
75 Sharma, R., Misra, S.C. and Sha, O.P. (2009), "Drillships of semi-submersibles for deep waters", Mar. Engineers Rev. (FEV), 36-41.
76 Scruton, C. (1963), "On the wind excited oscillation of stacks, towers and masts", Proceedings of the conference on wind effects on buildings and structures, held in Teddington, England, June, National Physical laboratory.
77 Sharma, R. and Sha, O.P. (2005), "Practical hydrodynamic design of bulbous bows for ships", Naval Engineers J., 117(1), 57-76. https://doi.org/10.1111/j.1559-3584.2005.tb00321.x.   DOI
78 Sharma, R., Misra, S.C. and Sha, O.P. (2009), "Deepwater drilling designs-System integration", Mar. Engineers Rev. (MER), 41-44.
79 Son, M.J., Lee, S.C., Kwon, K.C., Kim, T.W. and Sharma, R. (2011), "Configuration estimation method for preliminary cost of ships based on engineering bills of materials". J. Mar. Sci. Technol., 16(4), 367-378. https://doi.org/10.1007/s00773-011-0139-9.   DOI
80 Yang, M., Teng, B., Ning, D. and Shi, Z. (2012), "Coupled dynamic analysis for wave interaction with truss spar and its mooring line/riser system in time domain", Ocean Eng., 39, 72-87. https://doi.org/10.1016/j.oceaneng.2011.11.002.   DOI
81 Zhang1a, X.T., Li, Z.Y. and Fu, S.X. (2014), "Study of the flow around a cylinder from the subcritical to supercritical regimes", Ocean Syst. Eng., 4(3), 185.200. https://doi.org/10.12989/ose.2014.4.3.185.   DOI
82 TMUSFOS (2015), "Technical Manual USFOS", website: www.usfos.no.
83 Tamura, Y. (2020), "Mathematical models for understanding phenomena: Vortex-induced vibrations", Japan Architect. Rev., 3(4), 398-422. https://doi.org/10.1002/2475-8876.12180.   DOI
84 TMAA (2011), "Technical Manual Ansys - AQWA v 14.0", website:www.ansys.com.
85 TMHAWC (2015), "HAWC2 Manual v 4.6", website: www.hawc2.dk.
86 Takagi, M., Ichi, A.S., Seiji, T., Kunio, T. and Naonosuke, T. (1985), "A comparison of methods for calculating the motions of a semisubmersible", Ocean Eng., 12(1), 45-97. https://doi.org/10.1016/0029-8018(85)90010-1.   DOI
87 Ye, W., Shanks, J. and Fang, J. (2003), "Effects of fully coupled and quasi-static semisubmersible vessel motions on steel catenary riser's wave loading fatigue", Proceedings of the Offshore Technology Conference, Houston, Texas, U.S.A, May 2003. https://doi.org/10.4043/15105-MS.   DOI
88 Yilmaz, O. and Incecik, A. (1995), "Extreme motion response analysis of moored semisubmersibles", Ocean Eng., 23, 497-517. https://doi.org/10.1016/0029-8018(95)00057-7.   DOI
89 Zhao, W., Zou, L., Wan, D. and Hu, Z. (2018b), "Numerical investigation of vortex-induced motions of a paired-column semi-submersible in currents", Ocean Eng., 164, 272-283. https://doi.org/10.1016/j.oceaneng.2018.06.023.   DOI
90 Eswaran, M., Goyal, P., Reddy, G.R., Singh, R.K. and Vaze, K.K. (2013), "Fluid-structure interaction analysis of sloshing in an annular-sectored water pool subject to surge motion", Ocean Syst. Eng., 3(3), 1-21. https://doi.org/10.12989/ose.2013.3.3.181.   DOI
91 Hong, Y., Choil, Y., Lee, J. and Kim, Y. (2008), "Vortex-induced motion of a deep-draft semisubmersible in current and waves", Proceedings of the 18th International Offshore and Polar Engineering Conference, ISOPE-2008, Vancouver, BC, Canada, July, 6-11.
92 Blevins, R.D. and Burton, T.E. (1976), "Fluid forces induced by vortex shedding", J. Fluid. Eng., 95, 19-24. https://doi.org/10.1115/1.3448196.   DOI
93 Zhao, J., Nemes, A., Lo Jacono, D. and Sheridan, J. (2018a), "Branch/mode competition in the flow-induced vibration of a square cylinder", Philos. T. Roy. Soc. A: Math., Phys. Eng. Sci., 376(2126), 20170243. https://doi.org/10.1098/rsta.2017.0243.   DOI
94 Zou, J. (2012), "Semisubmersible platforms with steel catenary risers for Western Australia and Gulf of Mexico", Ocean Syst. Eng., 2(2), 99-113. https://doi.org/10.12989/ose.2012.2.2.099.   DOI
95 Bing, S.T., Min, Y.J., Xin, L. and Fei X.L. (2011), "Experimental investigation on wave run-up characteristics along columns and air gap response of semi-submersible platform", J. Hydrodynam., 23(5), 625-636. https://doi.org/10.1016/S1001-6058(10)60158-8.   DOI
96 Bourguet, R. and Triantafyllou, M. S. (2015), "Vortex-induced vibrations of a flexible cylinder at large inclination angle", Philos. T. Roy. Soc.A: Math. Phys. Eng. Sci., 373(2033), 20140108. https://doi.org/10.1098/rsta.2014.0108.   DOI
97 Bearman, P.W., Johanning, L. and Owen, J.C. (2001), "Large-scale laboratory experiments on vortex-induced vibration", Proceedings of the 20th international conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, June.
98 Rijken, O. and Leverette, S. (2008), "Experimental study into vortex induced motion response of semisubmersibles with sqaure columns", Proceedings of the 27th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2008-57396, in Proceedings of the ASME, Estoril, Portugal, June, 15-20. https://doi.org/10.1115/OMAE2008-57396.   DOI
99 Chen, C.R. and Chen, H.C. (2015), "CFD simulation of vortex induced motions of a deep draft semisubmersible platform", Proceedings of the 25th International Offshore and Polar Engineering Conference, ISOPE-2015, Hawaai, USA, June, 21-26.
100 Brown, D.T. and Mavrakos, S. (1999), "Comparative study on mooring line dynamic loading", Mar. Struct., 12, 131-151. https://doi.org/10.1016/S0951-8339(99)00011-8.   DOI
101 Rijken, O. (2014), "Examing the effects of scale, mass ratios and column shapes on the vortex induced motion response of a semisubmersible through CFD analyses", Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering, in Proceedings of the ASME, OMAE2014-23471, June, 8-13. https://doi.org/10.1115/OMAE2014-23471.   DOI
102 Rijken, O. and Leverette, S. (2009), "Field measurements of vortex induced motions of a deep draft semisubmersible", Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79380, 739-746, in the Proceedings of the ASME, Honolulu, Hawaii, May 31 - June 5. https://doi.org/10.1115/OMAE2009-79803.   DOI
103 UG (2015), "User guide for Shear7 V4.9", AMOG Consulting, Australia, 7th December 2015, website address: www.shear7.com.
104 Van Dyke, M. and Van Dyke, M. (1982), "An album of fluid motion", 176, Stanford: Parabolic Press.
105 Van Santen, J.A. (1985), "Approximative formulae for calculating the motions of semisubmersible", Ocean Eng., 12(3), 235-252. https://doi.org/10.1016/0029-8018(85)90015-0.   DOI
106 Kirk, C.L. (1985), "Resonant heave motions of semisubmersible vessels", Ocean Eng., 12(2), 177-184. https://doi.org/10.1016/0029-8018(85)90080-0.   DOI
107 Song. A., Ping, S.L., Yong, L. and Qiang, W. (2010), "Evaluation of station keeping systems for deepwater drilling semisubmersibles", Mar. Sci. Appl., 9, 312-316. https://doi.org/10.1007/s11804-010-1013-6.   DOI
108 Soti, A.K., Thompson, M.C., Sheridan, J. and Bhardwaj, R. (2017), "Harnessing electrical power from vortex-induced vibration of a circular cylinder", J. Fluid. Struct., 70, 360-373. https://doi.org/10.1016/j.jfluidstructs.2017.02.009.   DOI
109 Strouhal, V. (1878), "Ueber eine besondere Art der Tonerregung", Annalen Der Physik, 241(10), 216-251. https://doi.org/10.1002/andp.18782411005.   DOI
110 Konstantinidis, E., Dorogi, D. and Baranyi, L. (2021), "Resonance in vortex-induced in-line vibration at low Reynolds numbers", J. Fluid Mech., 907, A34. https://doi:10.1017/jfm.2020.850.   DOI
111 Kretschmer, T.R., Edgerton, G.A., Black, S.A. and Albertsen, N.D. (1975), "SEACON II: An instrumented tri-moor for evaluating cable structure design methods", Proceedings of the Offshore Technology Conference, OTC-2365-MS, Houston, Texas, May, 5-8. https://doi.org/10.4043/2365-MS.   DOI
112 Domala, V. and Sharma, R. (2018), "An experimental study on vortex-induced vibration response of marine riser with and without semi-submersible", Proceedings of the Institution of Mechanical Engineers, Part M: J. Engineering for the Maritime Environment, 232(2), 176-198. https://doi.org/10.1177/1475090217691411.   DOI
113 Skop, R.A., Griffin, O.M. and Ramberg, S.E. (1977), "Strumming predictions for the SEACON II experimental mooring", Presented at 9th annual Offshore Technology conference, Houston, Texas, May. https://doi.org/10.4043/2884-MS.   DOI
114 Waals, O.J., Phadke, A.C. and Bultema, S. (2007), "Flow induced motions of multi column floaters", Proceedings of the 26th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2007-29539, in Proceedings of the ASME, San Diego, California, USA, June, 10-15. https://doi.org/10.1115/OMAE2007-29539.   DOI
115 Bourguet, R., Lucor, D. and Triantafyllou, M.S. (2012), "Mono-and multi-frequency vortex-induced vibrations of a long tensioned beam in shear flow", J. Fluid. Struct., 32, 52-64. https://doi.org/10.1016/j.jfluidstructs.2011.05.008.   DOI
116 Bourguet, R., Karniadakis, G.E. and Triantafyllou, M.S. (2011b), "Lock-in of the vortex-induced vibrations of a long tensioned beam in shear flow", J. Fluid. Struct., 27(5-6), 838-847. https://doi.org/10.1016/j.jfluidstructs.2011.03.008.   DOI
117 Vickery, B.J. and Watkins, R.D. (1964), "Flow-induced vibrations of cylindrical structures", In Hydraulics Fluid Mech., 213-241. Pergamon. https://doi.org/10.1016/B978-0-08-010291-7.50018-5.   DOI
118 Vandiver, J.K. (1983), "Drag coefficients of long flexible cylinders", Proceedings of the Offshore technology conference, Houston, Texas, USA, May 2-5. https://www.onepetro.org/conference-paper/OTC-4490-MS.
119 Vandiver, J.K. (2002), "A universal reduced damping parameter for prediction of vortex-induced vibration", Proceedings of the 21st international conference on OMAE, Oslo, June, 23-28. https://doi.org/10.1115/OMAE2002-28292.   DOI
120 Verley, R.L.P. and Every, M.J. (1977), "Wave induced vibration of flexible cylinders", Proceedings of the Ocean Technology Conference, Houston, Texas, USA, May 2-5. https://www.onepetro.org/conference-paper/OTC-2899-MS.
121 Madjid, M., Quentin, M., Zhen, G. and Torgeir, M. (2011), "Hydroelastic code-to-code comparison for a tension leg spar-type floating wind turbine", Mar. Struct., 24, 412-435. https://doi.org/10.1016/j.marstruc.2011.05.006.   DOI
122 Kurian, V.J., Ng, C.Y. and Liew, M.S. (2013), "A numerical and experimental study on motion responses of semisubmersible platforms subjected to short crested waves", Proceedings of the 11th International Conference on Vibration Problems, Lisbon, Portugal, September, 9-12.
123 Liu, G., Li, H., Qiu, Z., Leng, D., Li, Z. and Li, W. (2020), "A mini review of recent progress on vortex-induced vibrations of marine risers", Ocean Eng., 195, 106704. https://doi.org/10.1016/j.oceaneng.2019.106704.   DOI
124 Sumer, B.M. (2006), "Hydrodynamics around cylindrical strucures", Advanced series on ocean engineering 26, World Scientific Press, Singapore.
125 Maeda, H., Tomoki, I., Koichi, M. and Chang-kyu, R. (2000), "Time-domain analyses of elastic response and second-order mooring force on a very large floating structure in irregular waves", Mar. Struct., 13, 279-299. https://doi.org/10.1016/S0951-8339(00)00032-0.   DOI
126 Liu, M. Xiao, L., Lu, H. and Xiao, X. (2017), "Experimental study on vortex-induced motions of a semi-submersible with square columns and pontoons at different draft conditions and current incidences", Int. J. Naval Architect. Ocean Eng., 9(3), 326-338, https://doi.org/10.1016/j.ijnaoe.2016.11.003.   DOI
127 Goncalves, R.T., Rosetti, G.F., Franzini, G.R., Fujarra, A.L.C. and Nishimoto, K. (2010a), "Case study of vortex-induced motions (VIM) on monocolumn platform applying the Hilbert-Huang Transform method", Proceedings of the 20th International Offshore and Polar Engineering Conference, ISOPE-2010, Beijing, China, June, 20-25.
128 Sharma, R., Kim, T.W., Sha, O.P. and Misra, S.C. (2009), "Semisubmersible design faces challenges", Offshore Marine Technology (OMT), 3, 22-30.
129 Dale, J.R., Nenzel, H. and McCandles, J. (1966), "Dynamic characteristics of underwater cables-flow induced transverse vibration", U.S. naval Air Development center, Johnsville, Pa. report NADC-AV-6620.
130 De Wilde, J.J. and Huijsmans, R.H.M. (2004), "Laboratory investigation of long riser VIV response", Proceedings of the 14th International Offshore and polar Engineering Conference, ISOPE-2004, Toulon, France, May, 23-24.
131 Sharma, R., Kim, T.W., Sha, O.P., and Misra, S.C. (2010), "Issues in offshore platform research-Part 1: Semi-submersibles", Int. J. Naval Architect. Ocean Eng., 2(3), 155-170. https://doi.org/10.2478/IJNAOE-2013-0032.   DOI